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functional , whose integrand changes Its form at an unspecified switching
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conditions for an optimal control and switching time are derived for a
general two—stage proble~~~~

- 
.The tiio—stage blem is then generalized to a multi—stage problem

where the integrand of the cost functional can change from one form to
/aflother among N given forms at any instant for any number of times.
This problem is shown to be reducible to a standard optimal control
problem by introducing a set of auxiliary control variables. It is
shown that a chattering control may be encountered due to the nonconvexity
of the augmented control constraint set.

Next, the fixed k—stage optimal control problem is examined . For
this problem , the control is kept constant on each of the k prescribed
subintervals on which the cost functional assumes a different form.
This leads to an equivalent parameter optimization problem in k—dimensional
Esiclidean space. A feature of this finite dimensional formulation is
that no approximation errors are introduced in the discretization of the
system equations.

The problem of minimum input energy plasma heating by neutral
injection is studied utilizing the derived results. This problem is
formulated as a two—stage optimal control problem. It is shown that
optimal heating is achieved by an on—off neutral injection program which
is characterized by a three point boundary value problem. The results
on the fixed k—stage problem are also utilized in characterizing the
opt~imal piecewise constant neutral injection program .

The optimal heating problem is reformulated as a multi—stage optimal
control problem using a single—temperature model of the plasma. The
optimal heating program is shown to assume one of three possible on—off
forms, depending on the heating time duration.

Finally, the stability of two classes of ion temperature feedback
control systems is discussed . The results suggest the possibility of
regulation of the ion temperature using feedback—controlled neutral
injection.
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ABSTRACT

Three classes of multiple stage optimal control problems are

studied . The derived results are applied to the problem of toroidal

plasma heating by means of neutral injection.

First a two-stage optimal control problem having an integral

cost functional, whose integrand changes its form at an unspecified

switching time, is considered. An existence theorem an~ two sets of

necessary conditions for an optimal control and switching time are de-

rived for a general two-stage problem.

• 
The two-stage problem is then generalized to a multi-stage

problem where the integrand of the cost fu nctional can change from

one form to another among N given forms at any instant for any num-

ber of times. This problem is shown to be reducible to a starx:lard

optimal control problem by introducing a set of auxiliary control

variables. It is shown that a chattering control may be encountered

due to the nonconvaxity of the augmented control constraint set .
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~bxt , the fixed k-stage optimal control problem is examined .

For this problem , the control is kept constant on each of the k pre-

scribed subintervals on which the coat functional assumes a different

form . This leads to an equivalent parameter optimization problem in

k-dimensional &~clidean space . A feature of this finite d imensional

formulation is that no approximation errors are introduced in the dis-

cretization of the system equations.

The problem of miniia~m ir~ ut energy plasma heating by neutral

injection is studied utilizing the derived results. This problem is

forinu.lated as a two-stage optimal control problem . It is shown that

optimal heating is achieved by an on-off neutral injection program

which is characterized by a three point boundary value problem. The

results on the fixed k-stage problem are also utilized in cha.racteriz-

ing the optimal piecewise constant neutral injection program .

The optimal heating probl em is reformulated as a multi-stage

optimal control probl em using a single-temperature model of the plasma.

The optima]. heating program is shown to assume one of three possible

on-off forms , depending on the heating time duration.

Finally, the stabil ity of two classes of’ ion temperature feed-

back control systems is discussed . The results suggest the possibility

of regulation of the ion temperature using feedback-controlled neutral

injection.
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CHA PI’E R I

N’r RODI CT I

p Thi s • l i s s”r t a t  ion ~~ u~~i~ t s  of two parts - Part 1 is devoted t o

the mathemat ica l  aspects of a class of opt imal control problems which

are mot ivated by the prob lem of opt imal heating of toroidal plasma s

• by nt ’a:~ s of neu t ral beam Injection . In cart 2, the derived mathe-

matical results are applied to plasma heating problems .

1.1. Optimal Heating Problem of Plasma by Means of Neutral Injection

In toroidal pla sma devices such as Tokamak , the plasma is con-

f ined  by a strong toroidal magnetic field supplemented by a poloidal

field produced by the plasma current. At the same time this plasma
I

current raises the plasma temperature throu gh the Joule heating effect .

There has been some hope that Joule heating alone would be sufficient

to raise the Ion temperature to a high level such that a relatively

low power complementary heating source wou ld be enough to achieve the

ignition temperature . However , from the recent exper iments, it has

become apparent that Joule heating is insufficient for this task

and auxiliary heating such as neutral injection may have to play a

dominant role in plasma heating. Since the energy consumption due to

auxiliary heating may become comparable to that due to Joule heating,
I.

It is important to operate the heating system at a high level of

efficiency .

In this dissertation, several optimal control problems motivated
•
1

•
~~~~~~

j  

~‘y the heating problems of toroidal plasma devices by means of neutral

injection are stu d i e d .

• 1
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The pr in ciple ol’ neut r al  be am inj eot ion  heating Is t h e  fo1lowin ~~:

~‘i rs t the e ’ner ~ e t i c  i, ’ut cal  beam is pro muced t ’y neu t r a l iz ing  la

a . c e ’ lerat tni ion 1 e~u~.s o t h a t  I ho beam can penie t r at e ’ the con 1’ 1 ~g mag—

ne t  Ic f i e l d .  The m oot ed neutral part j o b s then charge— exchange w i t h

~he p.1•~sn~’~ I o n s  to pr oduce ’ t’as t  (hot ) plasma ions and slow ( c o i l )

sen t ral part icles . I n  :i plasma heat Is~ expe r iment . neu t ral it i~i e ’c’t iOn

is i ntroduced whenthe plasma temperatures and densities are built up to  a

su f f i c  ~est ly high I eVe ’ 1 . It Is import -ant .  to know when neutral i i ,~ oct  —

ion should be in i t ia ted I~: or der  o mi~~~n iso  the total ln~~ t. I’ne ’rgv

w h i l e  ach iev iu~ the ,iesired ion temperature wi th in  a ~ IV On time ,Iura-

i o n  - Suppose the experiment st a r t s at time t 0 and la st s  unt 11

t ime t 1~, and neutral injection is I nt roduced at time t 1 ~ [0 .t~J .

:‘he ’n the total e ’ne ’rgv ccrtsac~pt Ion can he expressed as

t
f 

t f
:(t otal e:~er~~’~ ~ ~~oube heat-ing )dt  + f ( n e u t r a l . in j e c t  ion)dt  .

0 t 1 t, l .l)

The ‘~r, Th iem ci’ mI!1imi~ i:lg 1. 1” wit -h respect to  t1 as wel l  as the

‘:e-’u t cal j n , ect  ion program leals to an opt imal c on tr ol  prcI ’t’lom Wit h a

~~~~~~~ ~~~~ :\ni ct iosal  ~ given by

t f i~J = L~ (x ,u~ dt 

~ 

L,~~x ,u~ dt- . i. 2~

This problem wil l  be re~’err ed to as a two-stage optimal control problem

is one of the main problems con sidered in this dissertation .

An o t h er  opt Imal heat  it~~ proi’ lern ar i s es  from an engineering re —

~~~~~~~~ t h a t -  the neutral be am i~ , e ’ct -io ~ prog r am he such that the beam

cu rr ent -  is kept cce m~tant  on each pr oscr ibed  suhiuterval of the

_ _ _ _ _ _  - 
~~~~~ - - - - ——— • _ _
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experiment time interval [O ,tf ) . This is due to the fact that it is

difficult to vary the beam current continuously in time. Moreover,

the changes of the current at arbitrar y time instants are not easily

implemented. This motivates a fixed k-stage opt imal control problem
p

with piecewise constant controls and a cost functional which takes on

k different forms on k given subintervals .

p 1.2. Multiple Stage Optimal Control Problems

The distinctive characteristic of the two-stage opt imal control

problem is that the cost functional assumes different forms before and

P after the unspecified switching time t1. To solve this problem, we

need to specif ~y not only the control u but also the switching time

t1
. Two necessary conditions for an optimal pair (u*,4) are de-

P rived , one by means of calculus of variations and the other by decom-

posing this problem to two standard optimal control problems.

The two-stage problem ig generalized to the multi-stage opt imal

P control problem such that the integrand of the cost functional can

change from one to another among N given forms any number of times.

This problem is solved by reducing it to a standar d problem with the

P help of auxiliary control variables.

There are some works on optimal control problems having system

equations with discontinuous right hand side and. similar problems

p [10), [11) , [12), [13), [ 2li~], [25), [331, 1. ~4i). However, none of the

above works includes the treatment of a variable intermediate switch-

ing as a part of the control. Kleirmmn , Fortman and Athans [26 1

P mentioned the problem of choosing the switching times as a subject of

future research in their paper on a piecewise constant feedback

- - p  3



control. In a paper by Athens on the optimal measurement strategies

[1], he adopted a technique similar to the auxiliary controls dis-

cussed here . However , he did not discuss the possibility of chattering

— 
controls which Is important in considering the optimal multi-stage

controls.

The fixed k-stage optimal control. problem is solved by reformulat-

ing It as a parameter optimization problem in a real k-dimensional

Euclidean space &~. Then the techniques of mathematical programming

are applied to obtain a characterization of the opt imal solutions.

The optimal control problem with piecewise constant control but without

the assumption of a k-stage cost functional has been studied and many

standard results on this subject are available [6] , [30], [31]. A

standard approach to this problem Is to reformulate it as a discrete-

time optimal control problem and apply the methods of mathematical

prograimning. In discretizing the continuous system, an assumption is

usually made that each suhth terval is sufficiently short so that the

first-order approximation for an integration on each subinterval Is

satIsfactory. In the plasma heating problem, the assumption of small

subintervals would lead to a very rapIdly changIng neu tral beam

• current which is undesirable from the engineering standpoint. There- - 
-

fore , we do not adopt this assumption. In fact, we shall not use any

L 

approximations in the derivation of necessary conditions for optlinality.

Although the approach without the small subinterval approximation is

mentioned in many texts, for example [ 6], [ 3 6) ,  among the references

available to the author , none have given an explicit opt imality condi-

tion for such a case.

~~~1 - —--  ~~~~~~~~~ — -.--“
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1.1. Outline of Dissertation
p

In Part 1, consI st ing of Chapters II , III and IV , a mathematical

discussion on three multiple st.age opt imal control problems is presented.

The two-stage optimal control problem is formulated in Section 2 .1
p

and the existence of an optimal control pair is discussed in Section 3
2.2. In SectIons 2.3 and 2. 11- two set s of necessar y condit ions for an

optimal control pair are derived via two methods . As a special case,

a linear regulator problem with a two-stage quadratic cost is consid-

— ered in Section 2.5. A sufficient condition for nonexistence of an

optimal intermediate switching is also discussed for this problem.

In Chapter III, the two-stage problem is generalized to a multi-

stage problem. The formulation of this problem is given in Section

3.1. Subsequently it is reduced to a standard optimal control problem

by introducing a set of auxiliary controls. The existence question is

discussed in Section 3.3. The possiblity of chattering controls is

• also discussed in this section . A numerical example is provided to

illustrate the case when a chattering control is encountered.

The fixed k-stage optimal control problem is presented in Chapter

IV. The basic formulation and. an equivalent parameter optimization

prob lem are give n in Sections li.l and 11.2 respectively. A necessary

condition in integral form is presented in Section 11.3.

Part 2 is composed of Chapters V and VI. The results derived in
p

Part 1 are utilized in analyzing ~evera]. problems of plasma heating by

means of neutral injection . Chapter V is devoted to a discussion of

the minimum input-energy plasma heating problem using a two-temperature
P

model of the plasma which is given in Section 5.1. The existence and

5 ~~~~~~~~~~~~~~~
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the characterization of an optimal r~ utral injection heatir€ program

are discussed in SectIons 5.2 azx~ 5.3 respectively . The discussion of

the optima]. piecewise constant neutral injection program is then pre-

sented in Section 5)1.

A si~~lif1ed sir€le-teu~ erature mode]. of the plasma is adopted

in Chapter VI. The mi nimum injection energy problem usir€ this model

-

• 
is formulated in Section 6.1, where the existence of an optimal in-

ject ion program is also discussed . The characterization of the optimal

injection program is given in detail in Section 6.2. We then discuss

the dynamics ax~ stability of various ion te~~erature feedback control

systems. The analysis includes the effect of measurement time-delay

on the stability of the total system.

I.

6

Li ~~~~~ .•



— - -
~~~~~

• 
•-

~ 
— - -

~
•-- 

~~~~~~~~
——_-.-

~
•- —

~~
‘- 

~
— -•  •- -

-
- p

CHAPIER II

TWO-STAGE OFP WiAL CONTROL PROB Ik24

The two-stage optimal control problem is introduced in this

chapter. The existence and characterization of an optimal pair (con-

trol, switching time) are discussed .

2.1. Formulation of Two-Stags Optimal Control Problem

In this section we formulate an optimal control problem with a

two-stage cost functional.

Consider a system described by a vector differential equation on

a fixed time interval T ~. tt0,tf)

x = f(x,u,t), (1.1)

where x( t ) E1E~ and u(t) €1? are the state and control vectors

respectively. f is an n-dimensional vector-valued function which Is

assumed to be continuous In ~~~° xl t  x T. From now on, we denote

“d/dt ” by ““ . The initial and final conditions are given by

• $
x(t0) € X0, x (t

f
) € X~ , (1.2)

where and X
f 

are nonempty closed sets in E~ .

• Definition 1.1, A control u Is said to be t
1
-admissible for a given

switching time t1 € T If

1. there exists a corresponding unique solution of (1.1) which
S

satisfies (1.2),

1. 
_ _ _ _  _ _ _ _ _ _  _ _ _ _ _• - --- —• ---
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2. u() Is measurable on T and u(t) satisfies a control

constraint

0 , a.e. on [t ,t )
u ( t ) € 1 0 1 , ~• 3 )

a.e. on [t1,tf)

where the nonempty compact sets I = 1,2 are called the con-

trol constraint sets. 
~

The set of all t1-admissible controls Is denoted by At .  A pair

(u ,t )  is called an admissible control, pair if t1 ~ T and u € A~~~~.

We denote the set of all admissible control. pairs by A.

Definition 1.2. For an unspecified switching time t
1 

€ T, we def ine

the two-stage cost functional J(u,t1) by

J(u ,t1) = J L1(x ,u ,t)d.t + $ L
2

(x ,u,t)dt, (1.11)
to ti

where x is a solution of (1.1) and (1.2), and ~~~ I = 1,2 are

continuous in ~~ X]Em x T.

Now the two-stage optimal control problem is defined as follows.

Problem (T): Given a system (1.1) , a control time duration T ,

initial and final conditions (1.2), control constraint sets and

and a two-stage cost functional (1.14.). Find an admissible control.

pair (u*,t~) which minimizes the two-stage cost J(u,t1
) ,  i.e.,

J(u *,t~ ) < J ( u ,t~ ),  ( 1.5)

for any admissible control pair (u ,t1) € A. H

8

• ______
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A pair (u ’,t )  Is called an ~ptimal control pair and its corre-

sp~ n t 1 : t ~ solution ot ’ (1. 1) is called an optimal trajectory and ~frnoted

b y x .  A t r a i t ’ct ory x corresponding to an admissible control pair

• 
(u ,t1

) is called an admissible trajectory .

7 .2. Existence ~3t ’  Upt . imal Control Pair

We give a ~ t ’t of conditions which guarantee the existence of an

optima l control pair (u
*
,t )  by analyzing the properties of the

attainable set at time ti,, viz, the set of all right hand end-points

ot ’ the admissible trajectories x(t) at t = t i..

- 
- Cons ider the au~ sented systems descr ibed by

rL1(x ,u,t)1 AI f1(y1,u,t), I = 1,2, (2.1)
L t’~x,u,t) J

where y
1
(t ) “ (x~~t),x(t)) €i~~

”
~~, I = 1,2 will be referred to as

au~~ ented states . The first coordinate x~ ( t )  represents the time

• evolution of the cost

t

x~(t) $ L1
(x(s) ,u (s),s)ds , (7.2)

to
associated with the trajectory x specified by the last n coordin-

ates of y1, 1 12. We define au~nented attainable sets K~ (t ;1.E)~

1 = 1 ,2 by

S
• K1(t ~ 1,E) ~ U 1c1(t~ T ,y) ,  (2.~ )

yeR

where

P

- 4~~~ P -~
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~t . 
H

K1(t;’T ,y) e L~~ (t )  : y
1(t) = y # 

j  
f
1(y1(s),u(s),s)ds,

u(s) € ç~ , a.e. on [T ,t]J. (2.11.)

Then the set of all end points at t = t~, of the au~~ented trajectories

corresponding to t
1-admIssible controls, denoted by X(t

1),  can be

expressed as

- I K(t 1) = K2(t
f
;t1,K1(t

1;t0,y0)), (2 . 5)

where y
0 ~ to,~0)

T is an au~nented init ial point such that

y0 c Y
0 ~ l [O ,x0

]T x0 X~ j .  (2.6)

We first prove the following theorem.

• Theorem 2.1. Assume that

1. and are compact ;

2. there exist nonempty sets ~0
” and 

~2 ~~~~ such that

for I = 1,2, there exists a unique solution for (1.1)

with cp1(t 0) = x1, x1 e ~~ for any control u satisfying

u ( t )  € c~ , a.e. on T, and ~ 
~~

‘ 

~l ~ ~2 is nonempty;

3. f is continuous and ‘~
11n is bounded by M f < ~~ in

~~~ ~ ~~]. 
U 
~~~ 

x T, and are continuous and 1L11 are 3

bounded by M2 < ~ in ~ x x T, i = 1,2;

4 , X0 C I~ and any trajectory 
~
p with cp( t

0) € X0 correspond-

ing to a control satisfying condition (2) of Definition 1.1

for some t1 e T remains in ~~, i.e.

~(t ) € *~ V t £ T; (2 .7 )

10
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5, the .~et-s of’ au~ nented velocity vectors defined byp

~ 11L1(X ,u ,t) 1 +1
V1

(x .t~ € Th° : u € ~ ~~
‘ , I = 1,2, ( 2.~’)• 

~.Lf(x ,u,t-) J L J

• are convex for fixed x and t in ~ x T.

Then h ( t 1) is compact for any t1 € T and varies continuously in

t1 
with respect to the Hausdorff metric .~ ~

Proof: Fran conditions (3) and ( )4) , for any solution y1 of (2.1)

with any control u satisfying u (T)  € a.e. on [t0,t1] and any

y1(t 0) ~ = j ( O ,x0) x0 € X0 j ,

y1(t )~~ ÷1 lFy1(to)!I~+1 
+ $ ~f1 ~~~~ 

T), T )) I +1 dT

~ C0 + ~~(t~ - t0) ~~, (2.9)

where C0 
_ m a xx X X() 11 fl 

and M xnax tM~~M 2 J . This implies that

there exists a compact set b~ such that y1(t)  € for all

t € T. Hence under the conditions of this theorem, K1(t;t0,x0) is

4’The Hausdorff metric h (A,B) defined on the space of compact sets in

r
~~ is given by

h ”A ,B) = max~tnax d(a ,B) ,  max d(b ,A)J,

acA

where d (a,B) is the distance between the point a an~ the set B given

by d(a , B) mm a - b i f r

$ 

!.  
r 

is any valid norm defined on

11
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_- -—~~~~~~ —~~~-• ~~~~~~



,—~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~

- ---- - _

compact for each t € T and varies continuously in t [3 1. Sim-

ilar ly for any solution y2 of (~~.i) with any control u satisfying

U(S)  ‘ 
~2 a.e. on [i ,t )  and any y2(1) E

Ily2(t)fI~~1 < ly 2N ) f f  ~ + 

~~T 

ff 2(y 2( s ), u( s ), s ) f ~~~1 ds

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ (2.10)

Therefore K2(t
;T,K1(T:t0,

x
0
)) is also compact for each t t T , T £ T ,

t , and varies continuously in t .  Hence

is compact for arty t1 € T. Next we show the contim~ity

of h(t
1) 

with respect to t1. Let t1 ~ t2, t~ £ T , i = 1,2. Suppose

that a point P1 is in K(t 1) .  Then there exist a point e

a control u
1 

satisfying u
1
(t)e 02 a.e. on [t 1~tf 1 and a

corresponding augnented trajectory y
1 

such that
t f

P1 y1(t~.) = P
3 

+ j f’
2(y1(t),u1(t),t)dt-’ (2.11)

1

On the other hand, since K
1
(t;t0,y0) varies continuously in t,

there exists a point P~ € K1
(t 2 ;t0,y0) such that for every El ~ 0 ,

there exists a ~~~, 
-
~ 0

.1.

It 1 
- < 

~l ~~~ lIP3 - 

~~~~~~~~~~~~~~ 

£1.

Let 
~2 

c ~~t2) = K 2( t ~~zt 2 .K1(t 2 :t 0,Y0 ))  he given by

t f
P2 - y2( t~ ) = P~ ÷ J f 2(y 2( t ) , u 1( t ) , t )d t .  ~2. l2 )

t 2

12
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Now , under the assumptions of this theorem, it is known that the ~~ lu-
p

t,iens for the augmented system (2.1) deperyl corrtixizously on initial cordi-

tloris [ 7 ) .  In C~~-t we have for every ~ ~ 0, there exists a ~ -. 0

such that

- t 2~ + - ~l# n+i ~~ ~2 
-
~~ y1(t) - y2(t)lI +1

12 .13)

$ uniformly on [t 2.tf). Hence for a -
~ 0 such that 

~l 
+ 

~~~~. ~~~
we have for every F 0

It 1 - t 2 1 
~ ~~ IlP~ - P

2
If~~~÷1 = Y1(t~) - ~2(t~ )’! ÷1 ~ E. (2.1k)

This implies that h ç t 1) varies continuously in t1 on T.

Next , we find a suhset of i~~t 1) which corresponds to a set of

end points of admissible trajectories. Since the end point 01’ any I 
- -

admissible trajectory must lie itt X
f~ the end point of’ any au~ nented

admissible trajectory must be in ~~t1) fl Y~
, for some t

1 ~ 
T where

Y f ~~
‘ 

~~~~ = (x~~xf ) €iE~~
1 x~ frees X

f 
€ X

f). (2.15)

In other words , any pair of t1 € P and the end point y~ of an

au~ nented traject ory corresponding to some t
1-adm

issihle control,

t
1
~~Y

f
) e IE~~

’2 lies in A ~ fl Z f where ,

S ~; ~ j~~t~~.y) ~~~+2 
: y ~ ~(t1)J, ~~.lt~)

t
1

eT

Z r L’ j ( t 1,y~ ~ : y = (x 0,x) € Yj .

P



The set G is iflustrated in Fig. 2.1. Suppose the set A is non-

empty and compact , then an optimal control pair (u*,t) exists,

*since for a compact A, there exists a point a in A which has

the smallest second coordinate value among all points in A. The

* *first elem:nt of a is the optimal switching time t1. The optimal

control u Is given by the control which realizes the corresponding

au~~ ented trajectory y whose end point y*(tf) coincides with the

last n+l elements of a .

.~e shall show the compactn ess of A = G fl Zf~ hence the existence

of a:t optimal control pair (u*,t~), in the following theorem.

Theorem 2.2. In addition to the assumptions (l)-(5) of Theorem 2.1,

we assume that

~
- . the set of t1-admissible controls At is nonempty for t1

in a nonempty closed subset T3 cT.

Then A G f l  Z f is a nonempty compact set and an opt imal control

pair (u ,t1) exists .

Proof: The nonemptiness of G flZf 
is guaranteed by assumption (6) . 

•

Hence it remains to show the compactness of G C) Z f .  Since Xf was

assumed to be closed in lEn , Z f is also closed in Therefore

if -~~ is compact then G C) is also compact . Obviourly G is

bounded; we only need to show the closedness of 0. Let 1g~ j be a

sequence of points of 0 which converges to a point g. We show

tha~i ~ € 7 by contradiction .
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Suppose ~ j G. Let g
1 

E ~~~+2 and ~ ~ ~~n+2 be given by

r~l11 — [ t 11g~~- [~ 1j ’  ~~~~~~~~

Then g1 £ C and ~ ~ C Implies y~ € X(t11) and ~ ~ x (t~,) re-

spectively. We note that = lim
± ~~

t ii € P since P is compact.

Now since }((t
1) is compact , there exists a ball B(~~,c) ,  s ~ 0 in

~ n+1 such that B(~~,E) C) X(E1) = 0, where

B(~~,€) = [y jfy - 
~~~I I ~~ ÷~~ 

< € J .  (2. 19)

On the other hand, since g
1 

conver ges to ~~, for every — 
0,

there exists I~ such that 
~~ 

- 1”n+2 -c 
~l’ ~ ~ 

I~ . Hence for

every E > 0, there exists 12 such that ~~~~ - < €2 
and

- < €/2, (2.20)

for I -
~ 
12• This implies that

> -d(y i,~ ) + d(~~,X(~
’
1))  > -€/2 + € = €/2. (2.21)

Hence h ( X ( t . ) , h(t ,) )  —, ~~~~~~~ for some € -
~ 0. This contradicts the

continuity of x(t1) with respect to the Hausdorff metric . Therefore

€ X( t 1,) ,  i.e.. g € C. Thus G is compact and an optimal control

pair (u*,t )  exists. II
Remark: Let lE~~

2 be def ined by

C U [( t  .y) € JEn÷2 : y € X(t1)J. 
(2 .22)

t€ T  1
i s

S

lb -p
I
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• Then assumption ( 6 )  implies

G f l Z f = G f l Zf~~~Ø. (2.23)

*Hence t exists in T1 s

We note that the conditions (i)-(6) are sitn,ilar to those of the

standard existence theorem [ 3 ] .  In fact, under these conditions,

there exist optimal controls u~, I = 1,2 for the prob lems with th e

cost fu nctional
tf

J
~

(u) J-~0 L1(x ,u ,t)dt . (2.2 14)

(See Appendix A.)

2.3. Necessary Condition for Optimality

Under a set of appropr iate assumptions, a necessary condition for

an optimal control pair (u*,t~) can be derived via direct cauputa-

tion of first order variations. The result is a modification of a

well-known necessary condition in calculus of variations for a standard

prob lem with no intermediate swit ching . A set of assumptions and con-

ditions are summarized in the following theorem.

Theorem 3.1. Consider system (1.1) and cost (i.li ) .  Assume that the

control time interval T = [t
0~
tf] is fixed. Let the initial point

x(t ) = x~ be fixed and the term inal point x(t 4,) be free . Assume
r - 0 -~

that • . is continuous everywhere except possibly at t
1

. Also assume

~: 
that u(t) is unconstrained . Let f , L1 and L2 be twice continuous-

ly differentiable in x and u, and cont inuously differe ntiable in t .

17
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Define the Hamiltortians H~ (x ,~ ,u,t) by

H
1

(x ,p,u,t) = L
i

(x ,u,t) + pTf(x,u,t), I =- 1,2, (3.1)

where p(t)  is an n-dimensional adjoint vector . We use the superscript

•
~*“ to denote optimal quantities. Now, assume there exists an optimal

control pair (u*,t )  where t~ € (t
0
,tf ) .  Then it is necessary that

there exists a function p such that x and p satisfy a set of’

canonical equations given by

* * *~H1/~p (x ,p ,u 1, t ) ,  t~ < t  S. t
.* * * 

¼)

x f(x ,u ,t) = * * *~H2/~p (x ,p ,u2,t ) ,  t1 < t < t~

(3 .2)

-
~
H1/

~
x (x*,p*,u~ ,t), t

0 
<t < t1

, (3 . 3)

-~H2/~x (x
*,p*,u ,t), t1 < t < t f

with boundary conditions

~*(t o) = x0, p*( t )  0 , ( 3 . 1 4)

p*(t*_ ) = p*(t *+) (
~~~~ )

where p ( t 1
_ ) and *( * ) are the left and r i~ it limits of p*( t )

at t~ respectively and u , i = 1,2 are solutions of

~~]/
‘
~~ 

(x*(t),p~(t),u (t),t) = 0, t0 < t <

~H2/~u (x*(t),p*(t),4(t),t) = 0, t~ t ~ t f

(3.h)

18
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Also the following transversality condition is satisfied at t

I

H1(x (t 1) p*(t *) u~ ( t )  ,t~ ) = H2(x*(t~ ),p*(t~ ),u (t.~) ,t ) ,  (3.7)

where we have used (~~.5) .

S
narks

(R . l)  When t~ = t0, the boundary condition ( 3 . 5)  is irrelevant and

the transversality condition (3.7) is modified to

H1(x0,p
*(t0),  u~ (t 0),t0) <H 2(x0,p*(t 0),u ( t 0),t0). (3 .8)

Similar ly , for t1 = tf~ ( 3 . 5)  is again irrelevant and (3.7)

is now replaced by

H1(x*(t 1), 0 ,u ( t f ) , tf ) > H 2(x*(t f ) , o ,u ( t f ) , tf), (3.9)

-~~~~~~~~ or 
r

* * * * 
I -

L
1
(x (tf),

u
1(tf

)~tf) < L~(x (t f ) ,u2(t f ) , tf ) .  (3 . 10)

- 

~[ • (R .2)  The conditions (3 .6) and (3.7) are the two extra conditions for

our two-stage aproblem . (3 .6)  states the continuity of p*(t )

at t~ and (3.7) states the matching of 4 and 4 at t~~. fi
A lengthy but straightforward derivation of the foregoing con-

ditions is given in Appendix B.

0 2.Ii. Decomposition into Standard Problems

We derive a necessary condition for an opt imal control pair

(u *,t~ ) in the form of a zn~~cimum principle by decomposing the original

P problem into two standard problems. In this section, f, L1 and L2

5 ~~
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— . ,

— I are assumed to be continuously differentiable in x , u and t. We

start our discussion frcmi the case t 
~~~~~~~

First we consider an auxiliary problem which corresponds to the

second stage of the original problem.

Problem 1. GIven a system x = f(x,u ,t), a control time interval

- 

- 
(t 1,

t~,],  initial and final conditions

x (t1) = x1, x(t f ) £ Xf. (14.i)

and a control constraint that u ( .)  i~ measurable on [t 1,tf ) and

u( t )  € 

~2’ a.e. on tt 1,t f ) .  ( 14.2)

Find an optimal control ii which is admissible and minimizes the

cost J2(u) given by

tf
J2(u) f L2(x ,u,t)dt, (14.3)

over all admissible controls . )
~

Note : In this sect ion, a control u is said to be admissible whenever

1. there exists a corre sponding solution for the system equation

which satisfies the initial and final conditions,

2. u satisfies a control constraint.

It should be noted that the system equation , initial and final condi-

tions and control constraint may vary from problem to problem. U

II 

•

20
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Problem 1 is of standard form and can be solved using the

Pontryagin maximum principle . Let the Hainiltonian H 2 be defined by

}1
2(x ,p,u ,t) = -L2

(x ,u,t) + p~f(x,u,t), (14.1i~)

where p2 is an adjoint vector . Let u2 and x be an optimal

control and its corresponding trajectory . Then there exists (see the

maximum principle presented in Appeudix c) a corresponding adj oi’~t

*vector p such that

.* * * * T * *a) x = [~ H 2/~p2 (x  ,p2,u2, t ) J  , x (t) = x1. x (t v) €

( 1 4 . 5 )  
—

= - [~H2/ax (X
*
,P ;,U;, t ) J

P
, P;(t f ) j  ri . ;

b) max H2(x *( t ) , p (t) ,u2, t )  = H2
(x*(t),p (t),u (t),t)

u2
E 0

2

a.e. on [t 1~t f ], (14.7)

where fl~, l.a a tangent plane to at x*(t f ).

Now , suppose that we solve this problem for fixed t1 
and

and express the opt imal cost J as a function of t1 and x1, i .e . ,

* *
-~~~~ = J2(x 1,t1). (14.~ )

Then we can reduce the original two-stage cost (1. 14) to a cost in

*stan dar d form by substitut ing J
2
. Thus the original problem can be I 

- ,

reformulat ed as follows :

I
Problem 2. Given a system x = f (x ,u,t), init ial and final condition s

I
_
I

x (t0) € X0, t
1 

€ (t 0, t f ) and x( t 1) free ,

21 
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and a control constraint that u(.) is measurable on (t0,t1] and

u ( t )  ~ a.e . on (t 0,t~), (14.10)

— where [t0,t1J is the domain of definition of u. Find an opt imal

control u~ defined on an optimal interval (t 0,t~ ) ,  t~ € (t 0,t~ )

which minimizes the cost

t :L 
*

. * 

L1
(x ,u,t)dt + J2(x(t1),t1), (14.11)

~e.,  J(u ) < J ( u )  for any admissible control u defined on any

interval (t 0, t1] where t1 € (t 0, t
f

) .  It
Remark: Since we have assumed that t~ £ (t0,t~ ) ,  the constraint

t1 € (t~ ,t~.) is irrelevant. Therefore this problem reduces to a

problem with free terminal time and end point . The other cases

t1 = t0 and t1 = t f will be treated later .

Using the results in Remark 3 of the maximum principle in Appendix

C , we have the following set of necessary conditions for an optimal

* *control u and an optimal terminal time t1. Let the Hamiltonlan H1

be def ined as

H1
(x ,p,u,t) = -L1(x ,u,t) + pTf (x ,u ,t ) .  ( 14 .12)

Then ,

* *a) there exists an adjoint vector p1 defined on [t 0,t1)

such that

22



. . — 4~ -r -~ -- ~- — -~

= ~~H1/àp1 
(x*,p,u ,t))

T
, x*(t0) 

€ X
0
, ( 14.13)

= - jM ~1/~x (x*,p~,u~,t))T, p~(t
0) ~ 

1~~, (14.114)

where is a tangent plane to X0 at x*(t0);

b) max H1(x*( t ) , p1( t ) ,u1,t)  = H
1

(x*(t),p (t),u~(t),t)

*
a.e. on [t

0
,t
1
]; (14.15)

- 

- 

c) p~ (t~) and H I ~* satisfy the following transversality

conditions ,

p(t~) = - [~~T~~~x (x
*(t),t f l

P
, (14.lt~)

= ~4/ot1 (x*(t~ ) , t )  (14 17)

On the other hand , by the help of additional regularity assump-

tions , the right hand side s of (14 .i6) and (14.17) can be computed as

~J;/~~1 x1,t1 =~~~~~4T (t
1
), (14.18)

~J /~t1(x1 ,t1) = dJ /dt1(x1 
,t
1) 

- (~J /~~1(x1 ,t1))dx1/dt1

= H 2(x *(t1),p;(t1),u;(tl),ti) .  (~~.19)

By compar ing (14.i~ ) to ( 14.18) and ( 14 .17) to ( 14.19) we have

* * * *p1(t 1) = p2(t 1) ,  ( 14.20)

* *u~~~~ = H ~~~*, (14.21)
r l t 1 2 t 1

$ * * -
~ *where we abbreviate H1(x ~p~ ,u1.t) by H1, i = 1,2.

- . 

23
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I i
Thus we have established the following theorem.

Theorem 14.1. Suppose that (u*,t), t~ £ (t 0,t f ) is an optimal

control pair for the original two-stage cost problem, then it is I 
-

necessary that there exists an adjoint vector p~ such that,

* *a) an optimal trajectory x and p satisfy the set of

canonical equations given by

~ ~;, 1
* * I (14.22)

<t < tf

x*(t0) £ X0 and x*(tf ) € X
f J

-4 
.* 1

~~~~~~
J

~~*~~~~~~~~
J

T to <t <t~
p (14.23)

t ]• < t  
.~~~ tf~

— p*(t;_) = 
*
(* )

*() 
~ no and *( t )  I ri

*b) the Hamiltonians H
1
, 1 = 1,2 are maximized by u as -•

max H1(x*(t),p*(t),u,t) = H1(x*(t ) ,p *(t) ,u*(t ) , t ), l
U€C

I. a.e. [t0,t~) L-~~~~ 
(14.24)

max H2(x ( t ) , p  ( t ) ,u ,t) = H2(x (t),p (t),u (t),t),
* u€fl

1 - 
*a.e. (t1,tfl

211
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1.
c) The following transversality condition is satisfied at t

1,
I

41t* 
(11 .25)

$ Now , for the cases t = t0 and t1 = we have the following

result:

- 
1 Theorem 14.2. Suppose that t~ = t0 ( resp. t~~ = ti.), then it is

necessary that there exists an adjoint vector p such that for all

t E T ,

a) ic~ = H / ~p~
T , (resp . =

(11 .26)

x*(t 0) t X
0 and x*(t~ ) E X

f

I * * T * *
= _ [~H 2/àx) , (resp . ~ = -[~H1/~x 3 )

* * * 
4 .27

p (t
0
) j  ~~ and p (t i) I ~if

*h ) u satisfies

max H
2
(X*(t),p*(t),u,t) = H2

(x*(t),p*(t),u*(t),t)
uE~?2

( 14.28)
(reap. !nax H1(x*(t),p*(t), u ,t) H~(x*(t) ,p*(t),u*(t),t))

1 c) at t = t0 (resp. t1 = t f ) we have

1~ 
25 
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~~(x *(t 0) , (9,u (t 0) ,t0) H2(x
*(t0) ,p

*(t0),u (t0) ,t0)

(resp.

(14 .29)

* *where u. maximizes
1

Proof We wili consider the case t -= t0 only . The other case t1 —~

can he treated similarly. The conditions (11 .26), (4 .~~i) , and ( 14 .26)

are derived respectively from the cor~ itions (4 .23), (4 .2 14), and (4 .25)

of Theorem 14 .1. Nzw, f rom ( 14.iD we have for t1 € T ,

J
k
(t) ~ ~(u~) = J T ( x ~ u~, t ) d t+ J ( x~(t1),t1)

= dt ÷ J ( x *(t1), t1).  ( 14 .3Q )

Then

~f 
(ti) = ~ 5’ L ( ~ dt +

= L 1 t 
+ 

~J / ~
xj

~ ~~(t1) + ~~~~~~~~~~~~~~~~~~~~~~~~~ (4 .31)

~~w using (4.18) and (14.19)

~~ 
(t1) = 

~~~:1 

- p~(tl)
Tf~~t 

+ H t
= _
~~I t +H

~~t
. 

s
For the optimality of t1 = to • we must have

~f. 
(t
0) 

-
~ o. ( 1 4 . -fl)

Therefore

~~~~~~~~~ 
+ M;I~ ~- o. (4.314)

This gives (14.29). 
~
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* *
Remark : When H and/or H I do not exist ( for example , if u

* * 1is discontinuou s at t 1) ,  we replace and H2 1 t by the left

* * 
1 - l

arId right limits R~J~ - and H2 { t + 
defined by

1 1

H11 t - = lixn H;I~~
1 E-~O 1~c-~O .35

H;) t~+ = ~~~ H;) t1+E: It

2.5. Special Case

As a special case, we consider a state regulator problem with a

linear system and a two-stage quadratic cost . The system and the cost

are defined on T = [tQ.tf) by
H’

~ ( t )  = Ax(t) + Bu(t), I
( (5.1)

x(t0) = x0 ~1 0 given and X(t
f
) free, J

t

J(u) = 5 ~~~ (x~t)TQ1x(t) + u(t)
T R

1
u(t))dt

+ 5 ~~ (x ( t ) ~ Q2x(t)  + u( t ) T 
R2u ( t ) )d t , (5.2)

ti p - _

where A(n  x n ) ,  B (n x m), Q
1

(n x n ) ,  R, (m x m) are constant matrices

and = -‘ 0, R

’

~~ = R
1 

~ 0 for i = 1,2. We consider no con-

straint on u(t), i.e., 0,~ = 
~2 =

For this problem, the cost for the corresponding decomposed prob-

lem (1) is given by

= 

tf 
X (t TQ2X t  + u ( t ) T R 2u (t ) ) dt .

t i

27 
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It is well:known that the adjoint vector p 2( t )  and the optimal

control u~~t) are given by

p2(t) = -~2~t)x~(t),

1~ 
( 5 .~~)

u t )  = R~~ BTp2 ( t )  = _R~~ bTS2( t ) x ~ ( t ), J

\ n matrix 
~~ 

t )  is a positive definite solution of matrix

~i~ cat i equation :

- ATS
2(t) - 4 s2( t ) R R ~~~

Ts2(t )~~

J ( 5 . 5 ’
~

S (t~~~— O2s f’

Also the optimal cost J~ can be written as

J 2(x ~t1) , t 1) = ~ x(t1)~ 32(t1)x(t1
) .  (~~~~~)

:;ow , using (5.~-), the cost for the decomposed problem (2) i~ given ~~~~.

~ x~t1)~ 
s2(t 1) x c t1) + f  ~~ (xçt)~Q1x(t) + u~t)

TR
1
u(t))Jt .

~5.7)

For a free t1 and free x ç t 1
) ,  problem (2) can be solved as

follows:

p1(t )  = - S (t ) x *( t ) ,1 ç ~~~~
u (t )  R~ lBTp1(t) = _ R j

1L3TS1(t)x *(t),
j

’

where s1(t )  is an ii positive definit e matrix solution clf another

matrix Riccati equation :

2E 

~~~-~ -~~~~
-— —-

~~ —n -
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ( t )  = - S ( t ) A  - ATS1(t) - Q + S (t)BR~
1B
T
S1(t),

’
)1 1 1. 1. 
~~~~~(5 9)

s 1(t 1) = S2(-t 1) .  
J

Next we compute ~~ I = 1,2.

= - ~(x~~Q. x + u~~R1u )  + p~(Ax~ + ~~~),  (5.10)

- . where x1, i = 1,2 are solutions of (5.1) with controls (5 .~~) and

(5 . 11- ) on [t0,t1) - and [t1,
t
f) respectively. Algebraic computation

using (5 .14 ) and. (5.8) yields,

* 1 * * T .  * * *
k 

H
i I t* = x (t1) S1(t1)x (t1) ,

1 (5.11)

* 1 * * T .  * * *= x (t 1) S2(t1)x (t1).
1

* *Hence the transversallty condition Hi)t* = H2 ) t* is
1 1

* *T  • * • * * *0 = x (t1) ~_S~ (t 1) + S2(t1)Jx (t1)

* *T  * -1 - i T  * * *= x ( t 1) I.Q1 
- - S

2
(t
1

)B(R
1 

- R2 )B S2(t1)Jx  (t1) .  (5. 12)

We notice that if the matrix ~ (t) defined by

~ (t) 
~1 - 

~2 
- S2( t )B(R ~’ - R~~ )B TS2(t)  (5.13)

Is either positive or negative definite for all t € T, then the 
- -

transversality condition (5.12) can be satisfied only by x*(t~) = 0.

But since the canonical equation for x*(t) on [t 0,t~ 3 is given by - .

k~~t) = (A - BRjYS1(t))x
*(t), (5.114)

29
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then x*(t) 0, if x*( t )  = 0 at some t ime . This contradicts the

condition x(t0) ~ 0. Hence the definiteness of the matrix ~ ( t )

gives a criterion for the nonexistence of an intermediate switching .

This is summarized in the next theorem .

Theorem 5.1. .Suppose x0 ~ 0 and the matrix ~ ( t )  defined by (5.13)

i s  positive (resp.  negative) definite for all t € T, then t
1 = t0

(resp. t~ = tv) .  Ii
Proof: We already know that t

1 
is one of the er~d point s t0 or t f •
*Hence we only need to show that t 1 ~ 

for the positive definite

The other case can be shown similarly. The positive definite-

ness of and (5 . 1 2 )  gives

~~1

+ H2}t = ~ x
4
(t~~ ~(t1)x

4
(t1) - - - 0, (5.15)

for all t
1 

€ T. ~ow let j (t
1
) = min~~~~ J(u,t1) as it was de-

fi ned in Section 2.2. Then we have

*( )  ,
= _H

~~~ + A 21 t ,  (5. 1~ )

as is .~hown in Appendix P. fli- - r €-~~ re -i~~ (t 1) /dt1 > 0 for all

t1 € T. Th is gives t~ = 
~
. II

Thus , for this special case we have derived a sufficient condi-

tion for t~ to be one of the end points t0 or t f •

30
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p
CRAPPE R III

MU LTI-STAL~E OPI’3NAL CONTROL PR0BI~24

p The two-stage opt imal control problem is generalized to the

multi-stage opt imal control problem in this chapter . It is shown that

the multi-stage problem is reducible to a standard optimal control : -
~

• problem by introducing a eet of auxiliary controls .

3.1. Formulation of Multi-Stage Optimal Control Problem

We will now generalize the two-stage optimal control problem to
- 

*

the multi-stage optimal control problem by allowing the integrand of

the cost to switch any number of times. The integrand can swit ch from

one form to another among N given forms.

As before , we let the system, the control time interval and the

initial and final conditions be given as

~ 
-i

. x = f(x,u,t), (1.1)

t € T ~ [t 0, tf J ,  (1.2)

• x( t0) € X
0 

~~~~~~~~ x(tf) € Xf 
~~~~~~~~ (1.3) 

p

Let [o1,L~ ( ., , .)  J, i = 1,2, . . . ,N be N given pairs of a control

t constraint set and cost integrarid such that is active when
p

is chosen as a current integrand of the cost funct ional. We assume

to be a convex compact set in ~~m and , f and Li to be con-

tinuous in ~~~ x x I , I = 1,2,. ..,N.

i! P
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I

Definit ion 1.]. . We define a switching schedule to be a ( 2K-i) -

tuple [t l I t 2 , . . . , tK l :i l, i2~ .. .,~~~
] where K is the number of

stages; t ., j  1 ,2 , . . ., K-l , t0 ~- t1 St 2 
- . ... tK l  - t , are

the switching times~ and Ij. i 1,2 , . . . ,K are the indices of pairs

chosen for subj utervals I t . 1, t .) , j = 1, 2,.. ., K , t
K 

t1.JJ

It should be not~ed that , since the number of stages is free, K

— may vary from one schedule to another .

Definition 1.2. A control u is said to be i-admissible if

1. there exists a correspond ing solution of (1.1) which

satisfies ( 1.3) ;

2. u~~ ) is measurable on T and u ( t )  ~ a.e. on

-
~~ Et~~1~t~). ~ = i~~~~.. ..K . II

The performance of an K _admissible control u is measured by a j
ccs t -  functional ~1 (u)  given by

K ~j
J ( u )  ~ �~ $ L1 ( x ( t ) ,u ( t ) , t )d t .  ( 1. 14)

~~ 1 t~ _ 1 j

~ow the mu lti-stage optimal cc~ntrol problem -~a ii  h e stated as

follows :

Problem (M) :  iiven a system (1.1) , a control time interval (1.2) ,

init ial and final conditions (1.3) and N pairs 01’ control constraint

s~-t. ~ a~ d cost integrand s c~1,L1}. I = 1, 2 , . ..  ,N .  Find ~ switching

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ and ‘~~~-a~~ issih 1e control

u such that
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p

J(u *) 
~ 

$1 L
1~ 

(x*,u*,t)dt < J(u) (1.5)
1= 1 t~ _ 1 j

for any switching schedule and for any *K
_a

~~
1Issible control u .  H

Such a pair (~~~,u )  is called an optimal pair, i.e., the super-

script “~~~ “ denotes opt imality as before . A diagrsm showing the informa-

tion flow in this prob lem is given in Figure 3.1.

The multi-stage problem differs significantly from the two-stage

problem in tw~ ways : (i) the sequence of integrands of the cost func-

tional Is not fixed , (2) the number of switchings is not fixed . In

particular , we do not know beforehand whether the opt imal solution for

the multi-stage prob lem has a finite number of stages. This question

involves the existence of an optimal auxiliary control which will be

introduced in the next section. We will discuss this point in later

sections.

3.2 ReductIon to Standard Problem

Iii this section, we reduce the multi-stage optimal control problem

to a standard optimal control problem using auxiliary controls.

First we define N auxiliary controls v~ , I = 1,2,.. .,N which

satisfy the constraint:

v1(t) 0 or - 1 , I = l,2,...,N

* a.e. on T. (2.1)
N
~—1 V j =
1=1

We also define an auxiliary control vector v and an

au~nented control u

L • 

_ _ _ _ _ _ _
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~~~~
[
~~

J
€it÷N . ( 2 2 )

Let L0(x ,u ,t)  and Il be defined as

p 
~~ (x ,~~,t) ~ ~~ v1L1(x ,u ,t ) ,  (2.3)

i=l

N
0 U [(u ~ ,e1) ~ ~~m-$-N 

: U
1 

€ 0~), (2.14)

$ 1=1

where e1 denotes the unit vector in ]EN with unit i-th component .

We note here that the vector v can be considered to represent a

- , mathematical realization of the switching mechanism shown in Fig . 3.1.

- 
- The constraint (2.1) on v1, I = 1,2,.. .,N implies that at al-

most every instant of time t € T , one of the v1(t) ’ s , 1 1,2,.. .,N

is equal to one and all the others are zero. Hence at aimost every

t € T, I~~(x ,u ,t) is equal to one of L
~

(x ,u,t)t s, 1 1,2,.. .,N,

depending on which v1( t ) ’ s , i = 1,2,. ..,N is equal to one. Similarly

the augnented constraint set 0 can be Interpreted as u ( t )  € 
~~

. when

v1(t) = 1, I = 1,2,. ..,N. Thus when v.(t) = 1, the integrand of the

cost is Li(x ,u,t) and the constraint set is c~~, I = 1,2,. ..,N .

Therefore, finding an optimal auxiliary control v* is equivalent to p

finding an optimal switching schedule

Now we reformulate the reduced multi-stage opt imal control prob-

• lem as follows .

Problem (R): Given a system

p i = f(x, ,t) ~ f(x,u,t) , (2.5)

35
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on a control time interval (1. 2) wIth initial and final condition s

(1.3) and a cost functional

t f —

J(u) = j’ L0(x ,u , t )dt . (2.~-)

Find an a~~ issible control u which minimizes J ( u ) ,  i . e . ,

‘(u ) .— J (u )  for any admissible u .

Note: Here we define admissibility of u as follows .

1 • u steers x from x(t0) ~ X0 to x( t f ) € Xf,

2. u is measurab le on T and u ( t )  € ~ a.e. on T.

Problem (R)  is in the standard form and the Know n result s of con-

trol theory are directly applicable . In particular , standard necessary

conditions are applicable for the characterization of u . We will be

content with noting that the max imum principle of Appendix C is appiic-

able to this problem . We will not give explicit details here .

On the other hand , a difficulty is encountered in ensuring the

existence of u , due to the fact that the au~ nented constraint set

° is never convex. Hence we may experience a situation where the

opt imal control is a chattering ’ control. This will he discussed in ; 
-

detail in the following section . Furthermore , from an engineering

point of view , it is not feasible to have an infinite number of

switchings . That is to say , v should have only a finite number of

-. discontinuities. We demand a piecewise continuous v rather than a

measurable v . There have been several papers on the exi8tence of

opt imal piecewise continuous controls e .g .  Fta.~kin [21], Haj .kj n ~U1~~

Hendricks [22],  and r~~~ eli [ ia].  However these works treated ~n1y

Li - —- --- —
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systems which were either linear , or linear in the state variable .
p

The existence of optimal piecewise continu ous controls f~r more general

systems is still an open question and remains a subject for further

-

~ research.
p

~.3 
Chattering Control

For the existence of opt imal measurab le controls , most of’ the

standard existence theorems require a set of au~~ ented velocity

vectors

V~ x ,t)  ~ 
€ : y0 = L(x ,u ,t), y = f ( x ,u ,t~, u € c}

H 
+ 

(3.1)

or a set V (x , t )  defined by

V~ (x ,t) I n÷ 1 : y0 > L(x,u,t), y f(x,u,t), ~~ }
to he convex for each x and t (see Appendix A ) .  This almost ex-

elusively requires the control constraint set ~) to be convex. In

general , for problems which satisfy all except the convexity condition

for the existence of u~ , an opt imal control may not exist hut the

opt imal ‘relaxed” control may exist for the corresponding “relaxed” —

prob lem . Warga [421 gives an extensive discussion on the relaxed

prob lem and Berkovitz 3 )  has a concise presentation . Roughly speak-

ing, the idea of the relaxed problem is that , by allowing the velocity

vector ~( t )  t o  take on any value In the convex hull of V ( x ,t ) ,  the

existence of an optimal relaxed control and a corresponding relaxed

trajectory is assured. In su ch cases , it- is known that ( Warga P~2 I.

j
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Gwnkrelitze [17]) under appropr iate assumptions , solutions of the

relaxed problem can be uniformly approx imated by solutions of the - —

original problem . It is also known ( for example , Berkovitz [ 3)) that

such approximations can be realized by “ chattering” controls U
ch

where Uch(t) jumps rapidly back and forth among various points of 0.

We present a proposition which states conditions under which relaxed

solutions can be uniformly approximated by ordinary solutions.

ProposItion 3.1 3 1. Consider a control system defined on T = [a ,b ] ,

= i~ x ,u , t ) ,  where I
’ is continuous In >< XI. Let 0 be a

control constraint set . 3uppose that ~V is a relaxed trajectory sat -

isf’ying

co r 1~ -~t),o,t), a.e. on T , (3.3)

where co E denotesthe convex hull of a set E. Assume there exists an

integrahie function ~ defined on T such that

f~x,u,t)U < ~( t ) ,  ( 3 . 4 )

and

~f(x ,u ,t) — f ( y , u ,t ) I ~ < ~( t )  ~x — y!! ( 3.5)n n

for all u € 0 , t ~ T. Then f-~r any ~ > 0, there exists an ordinary

trajectory 4~ satisfying

~( t )  = f(~~~t ) ,u ( t ) , t ) ,  (~~~)

corresponding to an ordinary control u ( t )  € C a.e.  on T suth that

~(t )  - ~(t ) , ~ ~~. II (~ .7)

-I
3~
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Returning to our problem, ~2 given by (2. 14) is compact if

1 1,2,. . . ,N are c~ npact but never convex . Hence , in general , we

may only a~~~m~’ the exis  ~noo of relaxed solutions for t - h~- eorre~ po~ - 1—

ing re laxed problem and we m a y  have t o adopt a chattering control as

an approximation to an optimal control.

We conclude this chapter by presenting the following example .

i’1mer- ~ ex i st s  no optimal control for this example but the value of  the

cost can he made as close to its lower hound as desired b y chattering

controls. We tuote that if the example is l’onnulated as a two-stage

problem, then there exists art optimal control pair (u ,t~ ) .  Thi s is

~ Iso lemotist rated in the example .

Example. Consider a mu lti-stage optimal control problem on T = [0 ,11

wIth t he system equation and terminul conditions given by

X = ii , ( ~C )

• x ( 0 )  = 0, x~ 1) free , ( 
~~

ani with a cost functional

= 7 [
~ Lx

2 
+ (u - i)

2j  + x (u ~ J Y i] ~~t .

~‘ ~~ 
‘
~

We assume that C 2 ~ [-2 ,2] .  The au~~ erite d velocity set V~ x ,t~

r an d the set  V + x,t) are shown in Fig. ~~~ Obviously neither set i -~

convex . On the other hand , this example satisfies all the conditions

of Proposition ~.l. Therefore the optimal control may not ex is t  but

the opt imal relaxed control may exist . In that case the opt imal

_ _  - ~~-- 
~~~~~~--~~~~~~ - -~~~~~~~~
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relaxed trajectory can be uniformly approximated by a trajectory

corresponding to some chattering control . In fact , we can find a

sequence of controls which do not converge to any functions in the

usual sense but the sequence of the corresponding costs converges to

the obvious lower limit of J(u ,v ) ,  namely , zero.

Note that J(u,v) can be zero only when (1) x(t) = 0, u(t) = 1,

v1
(t) =1 and v

2
(t) = 0, or (2) x ( t )  = 0, u ( t )  = -1, v1(t) 0 and

v2(t )  = 1. But from (3.&), this cannot be realized. Instead , we con-

aider the following sequence of controls (uk ,vk ) :

k 1 on [ 21/2k (21 1) /2k]
u ( t )  = 

k k i = ~~~~-l on [(2i+l)/2 , 2(i+l)/2 I I -

(3.11)

when uk ( t)  = 1
(3.12)

[0 ,1) when u ( t )  = -l

These controls are shown in Fig . 3.3 together with their corresponding

trajectories. Obviously these controls satisfy the control constraints .

From Fig. 3.3, it is clear that

J(u k ,vk ) = 2k t 2/2 dt = (3 ~ 22k+l)-l (3 . 13)
0

k k  k kHence J (u  ,v ) -. 0 as k ~~. But clearly as k -. 
~~, (u ,v ) has

no limit in the usual sense . Thus, despite the fact that there is no

optimal control , J(u ,v) can be made as close to its lower limit zero

as desired by letting the control ‘ chatter” rapidly enough .

Now , suppose that this example was formulated as a two-stage

problem rather than a multi-stage prob lem . In other words , we assume

140
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that the cost is given as

t 1
J(u ,t1) = ~~ (x~ + (u - l)

2 Jdt + 5 ~ + (u + l) 23dt

(3.114)
I

Then the Hamiltonians H1 and H2 are defined by

H (x,p,u) = - ~~ [x2 + (u - 1)
2
1 +

H2(x ,p,u) = - ~~ [x
2 + (u + i)2J + ~ 

. 3.15

The opt imal controls for each stage are

$ 
* *max H (x,p,u) =~u (t) = p (t)  + 1

u . (3 .16)

max H2(x ,p,u) ~~ u*(t) = p*(t)  - 1

Substituting (3.16) into (3.15) leads to

* 1 * 2  *2 *- p  ) + p
(3.17)

* * 1 *2 *2~ * —

- p  j P

Now, the canonical equations for each stage are

$ d x~ 0 1  x~ 1
~~ [p*I ti & 

[*1 +

* * (3.18)
d [~ *] = (

0 1] ~~~~~~~ 
+

• This gives

x*(t) 1(p~
÷1) sink t

[p*(t ) ] = 

L(P~~
1) cosh t

, (3.19)

• [x:(t ) ] [4 cosh(t-l) - sinh(t_1) 1p ( t)  
1x~ 

sinh(t_ 1) - cosh(t-l) + ij

S 141
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*where p0 = p (0) and. X
f 

= x (1) , and we have used x (o) = 0 and

p*(1) = 0. Using the transversality condition H J ( t ~~.) =

we have,

= 0. (~~~~ )

From (3.19) and (3.20) , t~ , x and p0 can be compited as

t1 1/3 1

x = ..tanh 1/3 , or tanh 1 . (3.21)

p~ (cosh 1/3Y 1 
- 1 (cosh l)~~ - 1

These two extremal cases are shown in Fig . 3 . 14. The corresponding cost - -

values are respectively 0.02 and 0.12. Thus, an optimal control pair

(u *,t~ ) is given by

= i/s, (3.22)

* 
(cosht)/(cosh l/3), 0 < t  < 1/3

u Ct) = . (3 .23)
(cosh(t_2/3))/(coshl/3), 1/3 —

~ t 1

We note that u~ ( t )  satisfies the control constraint. The correspond-

* * pin~ trajectories x ( t )  and p ( t )  are

* 
( sinhtil(cosh l/3), 0 t ~-. 1/3

x ( t )  = , (3 .2 14)
-(ain h(t-3/2))/(coshl /3), 1/3 t —

~ 1

u~(t) - 1, 0~~ t <  l ’3
p (t) = 

— 

. (3.25)
u (t) +1 , 1 /3— t .~~l

This concludes the example .

42
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CHAPTER IV

FIXED k-~~~~AGE 0P~D4AL C0~~fl~R0L PR0BL~~4

In this chapter , we give a necessary coixiltion for an optimal

control problem with a cost assulni r€ k different forms on k fixed

stages , the control being kept constant on each stage .

4 .1. Formulation of ?ixed k-stage ~Dtimal Control Problem

As will be discussed in Chapter V, in the plasma heating prob-

lam , it is desired to find an optimal piecewise constant neutral in-

jection heating program I~ such that , (1) I*(t) is kept constant on

each given subirrterval , aixl (2) 1* minimizes the given cost func-

tiona.l which may assume different forms on different subirrterva.ls.

— This motivates the fixed k-stage optimal control problem which will be

discussed in this chapter .

First we consider a system

x = f(x,u), (1.1)

given on T = [t0~tf ], where f is coritiruously differentiable in

x 1E51. With the application to the plasma heating problem in mind ,

we consider the following terminal cozxlitions .

x(t0) = x0, (1.2)

h(x(tf)) < 0, (1.3)

where x0 is given arxl h is a continuously differentiable function

of x(tf). Let 1,L.(,-)), t = l,2,...,k be k given pairs of
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control constrai nt sets and integrand s of the cost . We asstmie that
p

~ are none~~ty convex compact sets and the L. are con-

tinuously differentiable in ]E X ]EW . Then the fixed k-stage cost

is defined as
P k

J(u) = 
~ 

$ L~(x(t)~u(t))dt (1.4)
i=_l t1_1

where t1, i = l ,2 , . . . ,k-1 are given switching times and tk = ti,.
p

Definition 1.1. A control U is said to be admissible if

1. there exists a corresponding solution of (1 .1) which sat-

isf’ies the terminal conditions (1.2) and (1.3),

2. u(t)  is constant and u(t)  = u~ € on each [t
~~1,tj ),

I = l,2,...,lc-l, and u(t) = u,~ € on [t.~_1,t~1. 
~

S Now the fixed k-stage optimal control problem is stated as

follows:

• Problem (F): Given system (1.1), terminal conditions (1.2) and (1.3)

and k pair s of constraint sets and integraixis of the cost functional

I 1,2 , . . . ,k , f ind  an admissible piecewise constant control

• u~ which minimizes the cost (l.1I~), i.e., J(u~) < J(u) for any

admissible u.  II .
-

Without loss of generality, we consider the case u(t)€]E1 only .

Also we assume that the constraint sets are compact interval s , I .e.,

= [vi ,wj ], = l,2,...,k, (1.5)

- p
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where ~~ < V1 
< V

1 
< ~~, I = 1,2, . . . ,k. The results obtained in the

following sections can be easily extended to the case with ni-dimen-

siona.1. controls.

14.2. ReformulatIon as Parameter Optimization Problem

For the fixed k-stage optimal control problem, it is required

that the control function is constant on each fixed subinterval .

Since there are k fixed subintervals , the control function can be

written as

u(t )  = E uiX[t ,t )  + uk X [~~~~~,t ] ,  (2.1)

where XE is the characteristic function of a set E. By considering

(2.1) as a map 3 from to the class of control fu nctions under

consideration, we can identify the control fu nctions with vectors in ]E~ . j
Therefore we can formulate the fixed k-stage optimal control probl em

as a parameter optiadzation problem in ]E~~.

Let u denote the parameter vector [u1,u2,...,u~) € ] ~~~. Then 
- 

-

the constraint on the control function

= [v 1,w~ I on [t11,t .) ,  1= 1 ,2 ,.

u(t) = 1 (2.2)
( U~~€~~~~ = [v

k,wk
] on ftk_l~

tf}

is equivalent to

g1(u)~~ (u~
_ v

1)(u1-w 1) ~~0, i= 1 ,2 , . . ., k .  (2.3)

Next , the final condition (1.3) can be transcribed as a con-

straint on the parameter vector u by considering a map from u to
x(tf) such that

L
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p

p xk (U
~) 

= x(tf) (2. 14)

where x(t f ) is the fi nal poi nt of the trajectory x corresponding

to the control function 3(a) . Substituting (2. 14) into (1.3) iei~1s

0. (2.5)

Now the fixed k-stage optimal control problem is reformulated as

a parameter optimization problem.

Problem (P) Minimize the cost J(u) given by

t .k i

= ~i $ L .(x( t ) ,u.)dt , (2.6)
1=1 t . ~ 1

i-i

with respect to u = {u1,u2, . . . ,u~~} subject to (2.3) and ( 2 . 5 ) , where

x(t) is a solution trajectory of (1.1) with (1 .2) and a control

function 3(s) . It
Thus we have a standard nonlinear progr~ uming problem for which

the standard results of nonlinear progranm~ing are readily applicable .

14 .3. Necessary Condition for Optimal Parameter Vector

In this section, we present a set of necessary conditions for an

optima]. parameter vector by appl ying the Kuhn-Thcker (K-T) condition

to the reformulated parameter optimization problem. The K-T condi-

• tion in general form is given in Appendix D.

First we define the Lagrangians ~(~ ) and M(~) as

~(u) ‘
~~ x0J(~.) + ph(xk (

~)),  (3 .1)

p
= J(~ ) + ~ ?~1g1(~), (3.2)

1=1

- p

-

~
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where ?~, I = 0,1,...,k and ~t are scai.ar multipliers. Let

be an optimal parameter vector. Then the K-T condition states that

- *at u = u

* * k 
*v M (u ) = v J(u ) + ?~ v g (~ ) = 0. (

~.3)U U

As we have discussed in Chapter I, no assumption will be introduced in

deriving the gradients in (3.3).

The following theorem gives necessary conditions in Integral

form . We note that the gradient v~M can be written in a compact

form by introducing the adjoint vector p(t) and the Hainiltonians - 
-

H.(x(t),p(t),u17X0), I = l,2,...,k.

* * * * TThecr em 3.1. Suppose a vector U = (ul,u2,...,uk} is optimal ,

then it is necessary that

~~t) = - f~H1/~~ (x
*(t),p*(t),u~,~~))T 1

on (t1_1,t1
), i =

* 
(3.4)

p (t1—) 
p (t.-i-), i =

p*(t) =_ ~~
*
(~~(~~(U

*))/~~~JT,

where x*(t) satisfies

* * * * Tx (t) = f~H1/~p(x (t),p (t),u1,
A
0)1

J on (t1_1,t1
), i =

(~ •~)
x*(tj_ ) = x*(tj+), i l,2,...,kl ,

LX*(t0) = x ~, h(x*(t~ )) < 0 ,

and

50
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H1(x (t),p (t),u1,

?~0)=A 0L1(,e (t),u1)+p 
(t) f~(x (t) ,u~ ),

( 3. 6)

I

2. there exist scaler nor~ositive multipliers < 0,

p i = 1,2, . . . ,k such that

)~;g1(
~*) = 0, i = l,2,...,k; (3 . 7)

-t —
p 3. 1 * * * * * * —

Sf1, aH.1/~u~ (x (t),p ( t), u1,?.~0)dt + 27s,~(u1-u 1)
0
t2 * * * * * * —

* S ~H2/~u2(x (t),p ( t ) ,u2,?~0)dt + 27~2(u 2 -u 2)

~uM
~~~ ) =  t1 . 

=0
— : 

* *r ~1ç/~u,~(x*(t),p*(t) ,u , ?~0)dt + 2~~ (u~ -

— k-i -

(3.8)

where = (v~ ÷ w 1)/2, I = l,2,...,k. 
~

For the proof of this theorem, we refer to Appendix F.

Remarks ~

(R.l) in (3.14) is a nonpositive multiplier corresponding to

the condition h(xk(u
~

)) < 0. Moreover, 0 if

h(x,~(u )) = 0 and ~i = 0 if h(xk(u )) < 0.

(R.2) The multiplier in (3.6) is nonpositive. We can assume

p < 0 if the first-order constraint qualification is

satisfied (various types of constraint qualifications are

discussed in Mangasarian 131] ) .  But when the constraint is

p of the implicit type such as ( 2 . 5 ) , It is generally imposs-

ible to check the qualification a. priori.

- - - 
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The followir€ theorem gives a more explicit characterization of

U .  It is said that the constraint g1 is active if g1(u) < 0 is

satisfied by equality .

* * * *TTheorem 3.2. Let U 
~~~~~~~~~~~~~~ be optimal . Suppose

S.
~~ 1 

(~}!~/~u1)(t)dt ~ 0 , then g1 is active and

* 

V1, i~ 5~~ 
(~ H~/~u1)(t)dt < 0

u1 = 
i—i- , (

~.9)
w1, if 

~ 
(~ H~/~u1)(t)dt > 0

where (~ H~/~u . ) ( t )  ~ (~~ j /~:j )(x*(t),p*(t), u~~~~ ). 
~

Remark : When = 0 , It is cbvious that

*

~~ ~~1/~u1(t)dt = 0. (3.10)
i-l

*For this case u1 may take any value in [v1 ,w1] and the equality

(3.10) must be solved to find u~ . 
~

Proof of Theorem 3.2. &~ppose

$ I (~ H*
/~u )(t)dt > 0. (3.11)

ti_i

Then in order for (3.8) to be satisfied , we must have

?~1(u 1 - u
1) 

< 0. (3.12)

This implies ~ 0 and, from the nonpositiveness of ?~, ?~ < 0.

lt~w, for < 0, the condItion (3. 7) states that g
1 is active, i.e.

g1(~~*) = 0. Hence either u~ = v~ or u~ = w1. But again for

52
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(3.12) can be satisfied only if u - > 0. Therefore 4 = w~ .
The other case can be shown similarly .

In general , :ome iterative procedur e must be employed for the

computation of u since the conditions in the above theorems in-

volve u~ . For the computational aspects of the nonlinear programmi ng ,

we refer to standard texts (for example , Canon, Cullum and Polak [ 6 1) .

: 5

p

3;

p

p

p

• 1

•

p

p 
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CHAPTER V

PlASMA HEATING BY NEUTRA L INJECTION

A problem of minimum Inpu t energy plasma heating by neutral In-.

je ction is presented in this chapter. The problem is formulated as a

two-stage opt imal control pr oblem and Is solved uti l izing the results

~ I 
of Chapter II. An optimal piecewise constant neutral injection pro-

gram is then derived using the techniques discussed in Chapter IV .

~ .l. Minimum Input Energy Plasma Heating Proble~n

In a recent report [ 9], the problem of toroidal plasma heating

by neutral Injection was studied using a spatially-averaged two-

temperature model of the pla sma . It was shown that the problem of

minimizing the total input energy while achieving a desired ion tern-

perature gives rise to a two-stage optimal control problem . We will I -
-

give an explicit formulation of this problem in this section.

When the electron and ion temperatures Te and T1 are of the

or~1er of KeV , we have the following equations for the average

energy transport associated with the electrons and ions.

dT
= S~ - SDe - 

~
‘ei - 

~‘R + (l.la )

dT
•~~ 

- 

~‘Di - 

~ex 
+ (1.lb )

where 
~~~~~ ~ei’ ~‘Dj ’ SR~ ~ex 

and are respectively the energy

- 

-

~ transport term s corresponding to Joule heating, electron-ion energy

exchange . dIff ~zsion loss of ~pec1es (j  e and I for electrons
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LI
and Ions) , line radiation loss , excitation and power-transfer fr czn

neutral beam to species j .  In explicit form, ( l . l )  can be expressed

as

p = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (i.~~)

= A .(T -.T i)T ; 3/2 _S
D1(T i,IP

) _ B 14Ti+B
S

X 2, (i .~~~)

dX /

= T~~~
2(EI)  - (c1T;

3’2 + c2~~
3’ 2)x1, (l.2c)

dX
E
~~ 

1(E I )  - (c1f
3 2 

+ C2E 3 2)x2, (l.2d)

where I is the toroidal pla sma current , E and I are the average

particle kinetic-energy and current of the injected neutral beam, and

X1 and X ,~ are normalized injected power transferred to electron s —

and ions respectively. The average particle kinetic-energy E is

assumed to be fixed . The exponents a and f~ depend on the electron

diffusion regime . Here we set i = l’2 and ~3 0 which correspond

to the collisional regime. The ion diffusion in the three reginies is

approximated by the functIon SDi defined by

S
DI

(T j ,I)  = Int 1T 2I 2,B2T~~
2I

_ 1
,B

3
T~~

2I 2 J, ( l .~~)

where Int fa 1,a2,a3
) denotes the intermediate value of the three

quant it ies a1, i = 1,2,3. The coefficients A .., B
k and C L are -

‘

given in Appendix F. For a detailed discussion of this two-tempera -

ture model , we refer to 9]. j
As was discussed in Chapter I. we consider a heat ing program

beginning with an initial Joule heating per iod followed by c~ nhined

55 ~~~~~~~~~~
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neutral injection and Joule heating.

Let the heating interval [0 ,tf] be fixed. For a neutral in-

jection current 1(t) defined on [t 1l t f ] with t1 € [0 ,t1], the

total input energy into the plasma is given by 
—

,
t
f 

t f
j(i,t ) A 12T_3/’P( t )d t  + 

- 

REI(t ) dt  (1. 14)1 .i 0 l p e  ‘

1

where the integrands of the first and second integrals correspond to

Joule heating and neutral injection heating respectively , and the con-

stant R is given in Appendix F.

Minimum Energy Plasma Heating Problem: Given the two-temperature

model of the plasma described by ‘l.2)~ a finite heating time interval

T ~ [0~tf ] initial conditions

(T (0) ,T1
( 0) , X 1( 0) . X 2- 0 ) ) = ~T 0,T 10, 0 ,o)~ (1.5)

a desired ion temperature T id T10~ and a constraint on the injec-

tion current 1(t) of the form

~ i (t )  0 on [o ,t1), (1 6)
~ I ( t )  € 

~~

‘ [Imin~
Im~~

) a .e.  on [t1,t f )~ ~

where T 0 > 0 , T10 > 0, ‘mm 0 and > ‘mm are specified

finite constant s , find a neutral injection program (I ,t1) such that

Tj (t f ) 
— 

Tid and the total input energy j ( i ,t1) given by (1.14) is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I .
Note that in this problem formu lation, E is held constant . In

gene ral , both E and I can be considered as controls.

we rewrite the total cost J in the following form .
t t.1  / /

P j(i.t
1
) = j A1I~T 3 2 (t )d t  + 

J 
[A~I’r

3 2(t) + REI (t ) Jdt .
0 t

]• (1.7)

Thus , the minimum input energy plasma heating problem is formulated

as a two-stage optimal control problem for which the results of

Chapter II are readily applicable .

5. 2. Existence of an Optimal Heating Program

We shall show that the plasma heating problem satisfies all the

conditions for the existence of an optimal control pair (u*,t~ )

given in Theorems 11.2.1 and 11 2.2

Let x denote the system state vector [T e~ Ti~
Xi~

X 2]T ~~~~~~

Let the right hand side of the system equation ( l .2a)-( 1.~~~) be de-

noted by f (x ,I) = e i jl~f 2]T

The initial set X0 and the constraint sets and 
~2 

are

give n by

X
0 = [T 0,T10, 0,OJ T , r1 ~°~~~‘ ~2 

- [Imin~I~~~ I~ 
(2.1)

Hence the compactness condition (i) in Theorem 11.2.1 is satisfied .

The convexity condition (5) in the same theorem is also sat isfied

since the au~~ented velocity vectors (A1
I~ç

3/2,f(x,I)) and

~A1I2T~~~
2+REI , f (x , I) )  are aff ine in the control I, is a point

and c~ is convex . Note that Theorem 11.2.1 is still valid when the2

set of au~~ ented velocity vectors is reduced to a point.

57

-J



— - - - — 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~

F . -

We note that the two-temperature model (1.2) of the plasma is

defined only in a cone C € ]E given by

C = t[Te~
Ti~

X1iX2)
T : 0 ~c T ,O < T 1,O .cz X1,O < X 2 }. ( 2.2)

Let i’~ be a nonenipty compact subset of C. Then f (x ,I) and the

integranris of the cost functional (i.14) are uniformly continuous in

~~~ ~~l 
U 
~~~ 

x T. This shows that the continuity and boundedness con-

dition (3) of Theorem 11.2.1 is satisfied on £ x u 
~~~ 

x T for

any compact set ~ c C.

Now the measurability of the control i (-) and the boundedness

of f(x,I) implies that F(x,t) ~ f(x,I(t)) satisfies t1~

Caratheodory hypothesis [ 7]. Furthermore, F(x ,t) satisfies the

Llpsehitz condition

F(x,t) - F(Y , t ) ;~ < M d l x - 

~~n ’ (2. 3)

for any x and y in any compact set ~ C ‘ and any fixed t ~a T ,

because the Jacobian matrix (oF(x ,t)/ax) exists for almost all x €

for fixed t ~ T, and each element (oF/ax)1~~ 
i,j = 1,2,3, 14 is uni-

fornily bounded in any ~ c ~
‘
, i .e. ,  for any x € S and t € T ,

~~~~~~~~~~~ ~~~~ ~~~~~~ i,j  = 1,2,3, 14, (2.14)

whenever (~F(x,t)/àx) exists. Thus we can apply Theorem 2.2 in
iJ

Chapter 2 of [ 7 1 to establish the existence of a unique solution of

(1.2) passing through any point of ~ with any control satisfying

the control constraint. Consequently, condition (2) of Theorem 11.2.1

of the existence of a unique solution is satisfied .
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Next we shall prove the following theorem s which show s that

condition ( 14) of Theorem 11.2.1 is satisfied .

Theor em 2.1. There exists a compact set ~ C C such that (1) the

• given initial point -x 0 = {TeO~TjO~0~0]
T 

is in 1~~
, and (2) for any

coi~trol I which satisfies the control constraint (1.6), the corre-

sponding trajectory does not escape from “

~
.

For the proof of this theorem , we need the following result .

Lenmia 2.1. Consider a function g defined on (O ,oo) such that

g( r )  = A1I~r 3/2 
- A2rV2 

- Ai~~
2_ A 14 - E, ( 2 . 5 )

- 2 2wher e E -
~ 0 is a constant . Assrnie that A - l2A A I s 0. Then

3 1 2 p
g( r )  is strictly monotone decreasing and g(r ) 0 has a unique

solution in (o,~).

Proof: Since g(r) is continuous in (O,c=) and

urn g(r) = c.’, lu g( r )  (2.6)

there exists at least one solution for g(r )  0. On the other hand ,

= -.r 5/2 (A 2r2 
- A

3
r + ( 2 . 7 )

Since the discritninant D of the parenthesized quadratic form is

negative by assumption , we have

(~ g/~r)  0 , v r > 0. (2.8)

I

1~I - -- -~~~~ -—— ~~
- ---
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- Thus g(r) is strictly monotone decreasing and there exists a unique

solution for g(r) 0 in (O ,oo) . ~f
Note that for the actual parameter values ( see Appendix G ) ,

D 
~ -9. Hence the condition in Lemma 2.1 is satisfied.

• Now we proceed to prove Theorem 2.1.

Proof of Theor~~ 2.1: Let Tec be the unique solution of g(r) = 0.

Let T = mln (T ,T J . Hereaft er, we assume that T > T .- emin ec eO e — einin
For any I € [I - ,I ] or I = 0, we havemm max

= T 3 ’2E1 0. (2 .9)

I Let be given by

1 + (T~~~
2 

E~~ ax )/ (C~~~
3/2) (2 . 10)

Then for any I satisf ying the constraint ,

l X
l=Xlmax 

= T~~’~EI - (c1T 3/2 
+ c2E

_ 3/2)x

T~~~~ El - C 2E 3/2 f1 + (T~~~~~ I )/ (c 2E 3/2 ) j

I I = C2E 3 0. (2.11)

Next we consider f2. For any I € [I~~~~ I ]  or I = 0,
-

. 
~2I x2=O 

= T~~’~~ I > 0. (2.12)

• Def ine as

x ~ + El /c . (2.13)max 2

L
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p

Then again for any I € [I In~
I ax ] or I = 0,

3 12 3/ 2 -3/ 2
~2 ’ X X  = E / (EI )  - (C iTe + c~E )x~~~

p < ~~~~~~~~~~~~ - C2E _3/’2(1 + EI
~~~ /C2)

= _C
2E _3/ 2 0. (2. 114)

Furthermore, for X
2 

€

~
11 T1=O = A

3
T~~ /2 

+ B
5
X
2 > 0. (2.15)

We also have for X2 € IIO~
X

~~ax ]

= A
3T;

h/2 
- A

3
T 3/2 

ma~~

< A
3

T~~~~ - B14Tim~~ 
+ B

5
X
~~ax = 0, ( 2.16)

where T . is given byimax

T . G (A
3

T~~~~ + B
S

X
~~ax )/B 14• (2.17)

Now we compute 
~e

1 T =T - From Lemma 2.1,
e emin

• 
~e 1 T = T 1 

- (A 11 ~~~~~~~~~~~~~~~~~ _A
3

T~~~~ _A 144A
5

X1

• A I2T _3/ 2
~A Tl~~ -A T~~~

2_A > ~ > 0, (2.18)
— 1 p emin 2 emmn 3 emin 14 —

for any T
1 

€ [0
~

Timax ] and X1 € [0
~
Xlmax] since Temi < Tee and

g(T~~j~) g(T~~ ) .  Fin:lly , 1:t Temax 0 be a solution of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
= 0. (2.19)
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Then for any T
1 

€ [O ,Tim~~
] and X1 t

- 
- 

~e ‘T=T 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-A 14 ~- 0. (2 .20)

Thus we have established that there exists no trajectory which e~-

capes from the region

~ £ L [T ,T ., X1,X ,~) T : T 1 ~ 
Te < Te a x~ 

0 < T1 < 

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2.21)

The gIven initial point x = [T ,T 0 0 1T Is In g since0 eO iO

Temin T
eO 

and 0 < T10. Consequently , any trajectory initiating

from x0 at time t r- 0 remains in g.

Theoreni 2.1 establishes the last remaining condition ( 14) of

Theorem 11.2.1. Thus , we only have to show condItion (6) In Theorem

11.2.2 in order to conclude the existence of an optimal heating pro-

gram .

Now we make the following two assumptions:

~~. Ti(t f~
I ) T1~ , where Tj (t f ;I ax ) is the final ion

temperature with 1(t) = I for all t £ [0,t 1;max f
2. T

id ~ ~~~~
, where is the equilibrium Ion temperature •

corresponding to Joule heating only.

The first assumption is essential in order for our problem to be

meaningful. Otherwise the desired temperature can never be
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ach ieved . The second assumption refers to the actual requirement that

Tid is near the ignition temperature . It is implied in this assump-

tion that neutral injection must be introduced over some positive

t ime duration so that the ion temperature can reach Tid . In [9 1

it was shown that the time-opt imal heating program which steers the

system from x0 to the target set (x = {T e~
T •~

Xi~
X 2]T : T. > T id )

in the smallest amount of time is given by 1(t) = I~~~ f or all t .

This implies that there exists a critical switching time tic 
for

which there exists only one trajectory with 1(t) = ‘ax °~~ t t 1~ .t i)

such that Ti(t f ) = T
id , and there is no trajectory with T

1
(tf) T id

for any switching time t > t . In other words , the set At of
1 le

t1
—admissible controls is nonempty for t

1 
€ [O ,t

1~~
]. This shows

that condition (6) in Theorem 11.2.2 is satisfied .

Thus the existence of an opt imal heating program (I~ ,t )  is

established .

5 .3 .  Characterization of Opt imal Heating Program

In this section , we apply Theorem 14 .1 of Chapter II to the plasma

heating problem and derive necessary conditions for an optimal heating

- • ‘ program .

First we form the Hamiltonians lI i, I = 1,2.

• 
H ( x ,p, I) = AlI:T;

3/2+plf e+p 2f i +p~ f l+p14f 2

= (p
3T;3/~~ +p 14E

112 ) I  + ~~~, (~~.l)

pp



H2(X ,p,I) = _ (A
1I~~~

3/2+REI) + 

~~~~~~~~~~~~~~~~~~~~~~ 
= S~ I + M ,

- 

— (~~.2)

where p = 1~~
1,~~

2,~~
3
,~ 14 1

T is the adjoint vector and S
~ ( t )  and M

are defined by

• S
~

( t )  ~~Ep
3
(t) T 3/2(t )  + E h/2p14( t )  - RE , (3.3)

M ~ plfe~~ 2fi+
3

Xl+ 2) lT 3/2
~~~~~

3!2) - A1I~~~ 3/2 . (3 . 14)

Since the constraint sets 1l,~ and 22 are given by

= t o), a 2 = [Imin~
Imax]

~ (3.5)

- f the maximization of H1 and H2 can be performed as

* * * * *max H1(x ,p ,i) = ff1(x ,p ,o) ~i ( t ) ,  (3 . 6 )
I€O l 

* * *
* * ~ 

S~ ( t ) I~~~ + M ( t ) , if Sw(t) ~~0
max H2(x ,p ,i) = * * * -

~~~ 2 5w (t
~~max +M(t), ii’ ST~~(t )  > 0  ( 3 . 1)

Th~ tranaversality 
:0

1tb0n Hi t :* H2 1 t* gives

* * 
~ 

Sw (t i+)I
~~~ 

+ M (t 1+) ,  if Sw (t 1+) ~ 0
M (t 1-) = 

~ * * * * * * . (3.8)

( 
~W 1 ~~~max +M (t 1+) ,  if Sw(ti+) ~ 0

Since M ( t )  and S
~
(t) are cont inuous,(3.E) yields •

S (t~) = 0. (3 . - )

This is the switchIng condition .
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When (3 .9 )  is satisfied on some positive time interval

the maximum principle fails to pr ovide any information about I ( t )

on this Interval. 1 (t )  and the corresponding trajectory x*( t )  on

such an interval [t
~~
t
b] are commonly referred to as a “ singular ”

control and singu lar arc respectively. Due to the nonlinearity of the

system equations ( l .2a) -( i .2d) , the nonexistence of singular controls

cannot be readily established .

By assuming the nonexistence of singular controls, the fore-

going results can be summarized by the following theorem .

Theorem 3.1. Suppose (I *,t~ ) is an optimal heating program, then

it is necessary that
*1. there exists an adjoint vector p such that

• -
~ *

-
~ 

~ _ (~H~/~x)~ , on [t ,t1)

* T * ‘

~ 
-(aH~/ax) , on [t1,tfl S

$ p*(t) = [O ,P;(~~f ) , O ,O1~~, (3.11)

-
: p*(t

k
) = p~(t +), (3 .l f l )

• where p2(t~) = 0 if T .(t ~ ) > T~~ and is unspecified if

T ( t f ) = T id~
2. I*( t )  0 , on [t 0, t~ ) and

• *

• ~~I , if S (t)~~~O~mm w *I ( t )  , on [t 1,t f ]~ (~~.l3)
if Sw(t) > O S

3. the following transvf’rsality condition is satisfied ,
p

s~(t) = 0. ,
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The explicit form of (3.10) is given in Appendix G.

Proof: Cond itions (3.10) and (3.12) follow directly from condition

(14 .23) of Theorem 11.14.1. Condition (3.11) together with the char-

acterization of P;(t f ) can also be derived from this condition .

Suppose T~ (t~ ) > T1~ , then the final condition T~ (t f ) > Tid can

- - be disregarded since it is not active. In other words, our problem

can be considered as a free end-point prob lem. Therefore p*( t )  = 0 -
•

arid this implies P ( t f ) = 0. On the other hand , if T~ (t f ) = Tid,

then the tangent plane to X f at X~ (t
f
) is the hyperplane

= (x (x ,(O,l,o,O)T) - Tid ). (3.15)

1- ~ 
Hence the condition p*(tf) j  fl . can be satisfied by any P2(t f ) .

The other conditions were already derived.

Thus , the optimal plasma heating program is of “ bang-bang” type

such that the neutral injection current takes on either the maximum

or minimum value.

Assuming the existence of a unique opt imal heating program , we

can express the necessary conditions in Theorem 3.1 as a three—point

boundary value problem (ThPBVP) .

Lemma 3.1. Suppose there exists a unique opt imal heating program

* * * *(I ,t1). Then x and p are solutions to the following three-

* point boundary value problem :
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.* * , T ~P (x = (3H
1
i~ p) ~ *

, on [t 0, t 1) ,  ( 3 . l l )
( j _ ( iH 1/~x)~ 

p

• 
= (Ô4/8P)~ ~ *

~,* _~aH~/ax)T5 
, on (t 1~t f ], (-3.17 )

with three-point bou ndary conditions given by

1x *(t o) = [T 0, T10, O,O) T .

T*( t  ) T , 
*( ) =I f — id (3 18)1 x:(t; ) = x~(t+ ). p~(t~-) = pk

(4~),

1.. ~~~~ 
=

where ‘~ 0 if TQ (t f ) 
~ 

T11~ and v~ is unspecified if T~~ tf )

T id. The opt imal injection current i~ ( t )  satisfies the maximizing

~ onj i t ion (3.13).

Thus , the solution of the original heating problem can be obtained

by solving this ThWP together with the maximization condition ~~~~

of the Haniiltonian H2 on the second Interval (t ~~.t f ) .

5.14. Piecewise Constant Neutral Inject ion

In actual experiments , it is difficult  to realize a continu ous

variation of the neutral beam current with time . Moreover , it i.s

- 
~ 1 preferred that the injection current has ,iumps at prescribed switching

times rather than at arbitrary time instants. This leads to the con-

sideration of neutral injection programs such that the beam current

Is kept constant on er~ch prescribed suhinterval of the heat 1r~~t ime

interval.
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Let t1, i = 1,2,.. .,k-1 be the given switching times such that

• to ~ t]• < t2 < - . < t ~~~ < t f~ We consider a cost functional given

by

[A1I~~~ ( t )~~3f2 
+ REI(tf ldt . ( 14.1)

i=l t~~ 1 
p

In this section, it is assumed that the constraint on the magnitude

of the beam current 1(t) is given by 0 = ‘mis < 1(t) 
~ 
‘max 

on every

interval, I.e.,

1(t) I. € [O
~
I ax)~ 

on [t .1, t .) ,  I = 1,2,.. .,k. ( 14.2)

By assuming I~~~ = 0, the subintervals with no injection are simply

indicated by i(t) = 0.

We formulate the problem of minimizing ( 14.1) with respect to 1(t)

as a parameter optimization problem as discussed in Chapter IV. Let I

be the parameter vector 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The constraint ( 14.2) is

replaced by

g1(I) e - Imax) < 0 , i = l, 2,...,k. ( 14 .3 )

The requirement that the trajectories reach the target set

[(T ,T1,X1,X2) : T1 > T
id
) at the final time t f can be expressed as

h(~~ (I)) ~ 
Tid - (a,x(tf)) < 0 (14.14) 

- 

-

where a = [0 ,1,0,0) T , ( , - )  is the inner product on and x( t f )

is the end point of the trajectory x corresponding to the control 
- 

-

1(t) = 

k-i 
x + . (14.5)

i=l 1-1’ 1 k-i’ 1

6~ 1~’
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Now the plasma heating problem is reformulated as follows :

Problem: Minimize the cost ( 14.i) with respect to I subject to

( 14.3) and ( 14 . 14) . fi
p

We now ut ilize the result s in Chapter IV in deriving necessary

*conditions for an opt imal I . In Chapter IV the right hand side of

the system equation was assumed to be continuously differentiable.

But f(x,I) does not satisfy this condition since sDi
(T
i) is not

differentiable in T1 at two points. We need to approximate SDi H
by some continuously differentiable function of T . .  One possible

form of approximation may be a polynomial of T.. Henceforth we

assume that S - is replaced by its continuously differentiableDi

• approximation.

The Hamiltonians H1 on subintervals [t . 1~t~ ) ,  1 =

have identical forms

H . ( x ( t ) ,p ( t ) , 11, X0) = ~(t )i1 +f~(t), i = l,2, . . . ,k , ( 14.6)

where 
~~

( t )  and M are given by

~~(t) = Ep3
(t)T;312(t) + E h/2p14( t)  - X~~~, (14.7)

M 
~i~

’e + + (p
3
X
1 + P14X2)(C

1
T
e 

+ C2
E )

- A1I~T 3’2 . (14.8)

Then for I = 1,2,. ..,k

p ~H1 —
~~~~~.— ( x ( t ) , p ( t ) , I1, X0) = S

~
( t )  (14 .9 )

~~~~~ 

~~

-
. 

.

.

. 

- - - 
~~~~- .

--
-
~~~ -- 

_
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does not depend on I~ explicitly .

* * *Theorem 11. 1. Suppose I [11,12,..  •~
Ik } i~ optimal, then

1. There exists an adj oint vector p which satisfies

fr (t) = - ( t)  I*( t )  - ~~~~~
_ ( t ) ,~~

* T ( ( 14.10)
~p (tf) = [O ,-~i ,O,O] , )

where < 0  (~ * 
= 0 if T~ (t f ) > Tid) ,  and I*(t )  =

t .
2. Case i) J ~~ (t)dt  = 0. ( 14.11)

• I~ is given as a solution of (14.11) .

Case ii) 
~ 

Sw(t)dt ~ 0, then
- I t.

i —*( 0 , when $~ 
S
~

( t )dt  < 0,
i-i

= 

~ ‘max’ when ~~1 ~~ ( t )dt  > 0. 
-

Proof: The condition (14.10) comes from (IV .3 . 14) in Theorem IV.3.1 and

~H —*
= ~~~— 4 + , on [t 11,t1) ,  i = l,2, . . . ,k . ( 14.13) 

p

Condition (14.11) and (14.12) follow from ( 14 .9)  and Theorem IV.3 .2.

It is interesting to compare the optimality condition (14.11) and

(14 .12) with (3.13) and (3.114) in Section 5.3. We notice that ( 14.12)

“approximates” (3.13) in the sense that as t1~
t
~ _ 1 j — ‘0 . the limit

of ( 14.12) coincides with (3 .13). In a similar manner , as It~-t~ .~j -’0
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p

P the limit of (14.11) coincides with the switching condition (3.14) .

In the next chapter , the two-temperature model of tI~ plasma will

be simplified to a single temperature model, for which the optimal

P heating program can be characterized in greater detail .

I

p

p

p

p

p 7].

_
..
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CHAPTER VI

SIN3LE-TEMPERATURE M0D~1 OF PLA~~~A

In this chapter , the minimum injection energy plasma heating

problem is discussed using the simplified single-temperature model .

The probl em of ion t e nip e r a t i ~i re stabilization using several forms

of feedback control is also discussed .

6.1. Sir~ le-ten~ erature Model of Plasma and Mi nirnun Inj ection Energy

Heatiz~

In the recent T.F.R. neutral injection experiments, it was ob-

served that , when neutral injection was introduced after the ion and

electron tamperat~xres approached their equilibrium temperatures

and 
~ 

(corresponding to Joule heating only), the electron tempera-

ture did not vary significantly during the neutral injection period .

This may be explai ned by the fact that the electrons are in a very

high-loss regime when the plasma current I~ is sufficiently large

[8 1.

In such a case , the electron temperature Te(t) may be approx-

imated by the constant Te~ 
and the two-temperature model ( v i  .2)

may be simplified to a single-temperature model having two equations :

one for the ion temperature (T
1) and the other for the injected

• power transferred to ions (X2) .  The relevant equations are:

:2
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p

= c1 - h(T .;I~ ) + c
2
X2 ~ fi(T~

,X2
) , 

~
(1.1)

X2 = c
3
1 - c4X2 = f 2(X2,I),

with initial conditions at t = 0,
P

T.(0) = T~0~ X2(o) = 0, (1.2)

where

c1 = A3ç3/
2 , 

~2 = B5, 1
C
3 

= E~~ /2 , c4 = c1ç3/2 + c2E
_3/2, ~~

. (1 .3)

h(T. ;I~ ) (A~~~~3/2 B4)T1 + SD1(T.;Ip). J
In this chapter , we shall use this model to discuss various problems

concerning the plasma heating process.

First, we consider the following minimum iz~ ut energy plasma

heating problem which is a. reformulation of the problem ~liscussed in

Section 5.1. Throughout this chapter , ‘mm is assumed to be zero.

Thte that we are employing the multi-stage formulation. The aug-

mented control constraint set (1 is given by

- 
- = [[I ,v1,v2 ]T : 10,1,01T or [1,0,1)T and 1€ fl= [0 ,1 1) .

(i .14)

Problem: Given system (1 .1) with initial conditions (1.2); a fixed
-p

heating time [0 ~tf 
}
~ and an augmented control constraint set ~

(1.14). Find an optimal augmented injection program (I*,v*) such

that (I*(t) ,v*( t ) )€ ~~ a.e . on [0 ,tf ] and the input-energy J(I ,v)

given by

73
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J(I,v) = $ ~~ e(tY~
12 

+ REI(t)v2(t) ]dt , (1.5)
0

is minimized while achieving the desired ion temperature at

tf~ i.e., T1(t~ ) > Tid . It
Since we have assumed that Te(t) is constant, the Joule heat-

ing term in (1 .5) is constant . Hence for a fixed heating interval

[0 ,t~ ], the total energy consumption due to Joule heating is

constant . Thus we may eliminate the Joule heating term from the cost

functional (1.5) and reduce the above problem to a mi nimum injection

energy problem. Furthermore, since the value v2(t)I(t) is equal to

1(t) a.e. on [0~t~ ] under the constraint (1 .14), we may identify

v2(t)I(t) with 1(t). Consequently, our problem can be simplified

to the following standard optimal control problem .

Problem L$i: Given system (1.1) wIth initial conditions (1.2), a

fixed heating time interval [0~t~~]~ and a control constraint set

= ~~~~~~~~ Find an optima]. injection program I such that

I*(t) € ~) s.c. on [0 ,tf ] aid the injection energy J(I) given by
tf

j(i) = 5 REI(t)dt, (1.6)
0

is minimized while achieving the desired ion temperature Tid at

t = t i.. i .e . ,  T1(t f ) Tid . ~

For this formulation, we note that the no-injection stage is

simply represented by 1(t) = 0 since 0 € fi by the assumption that

I 0. if I - - - 0, then c~ must be modified tomm mm

74



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. -~~~~~~~~~~~~
- - - -.~ 

- - - - - -

I

P ñ = 1J0) U [Imin~
Imax]J (1.7)

in order to include the rio-injection stage . As we have discussed in

Chapter III , a noriconvex constraint set such as ~ causes consider-
p

able difficulty in the analysis of optimal solutions.

*The existence of an optimal injection heating program I for

problem (S) can be established with the help of a standard existence

theorem presented in Appendix A. In fact , if the set of admissible

*controls can be shown to be nonempty, then the existence of I Is

guaranteed since all other conditions are satisfied . For this pur—
‘
~ p

pose , it is sufficient to assume that T .( t  ;I ) > T . as we did
1 f max — id

in Section 5 .2 , where T . (t  ~I ) is the ion temperature at the
i f max

final time t f with r(t) = ‘ax for all t € [O,tf].

Let ~ . (I ) be the equilibrium ion temperature with 1(t) = 
- -

~max 
for all t .  Henceforth assume that 

~i(Imax) > Tid, which is

obviou sly required in order to have T .( t ~~ I ) > T - Also assume
• max — id

that Tid is strictly greater than the equilibrium ion temperature

~i 
corresponding to Joule heating alone . This assumption implies

that neutral injection must be introduced for s~~ e positive time dura-
P

tion in order to heat the ions to T . - tid
In the following section , we discuss the characterization of an

*

( 
optimal injection program I in detail and give a simple algorithm

- P
*for the ccznp.it~ t ion of I -

- -
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6. 2. Characterization of Opt imal Heating Program

We start with the following resu lt .

Theorem 2.1. The optimal heating program i~ ( t )  for Problem (s) is

given by

* 
‘max’ when p;(t) RE 3~’

2

I ( t )  = 
* ~~~ 

( (2.1)
0 , when p2( t )  S RE ’” )

that p ( t )  ~ RE 3/2 on any posit ive time interval, where

is the second c~nponent of the adjoint vector p = [p 1,p2]

satisfying

= [:E~]= 
{

joh
T
~~

t
~~~~~ /~Ti JP~~t )J  ( 2.2)

P;(tf) = 0,

with ~h(T~ ( t )~ I ) / ~T14 (
~ h(T j~ I )/ ~Tj ) I T*( t ).  The values of I*( t )

* 3/2 
1 

*at the times when p2( t )  = RE are determined so as to make I

continuous frc~ the right hand side .

Proof: The Hamiltonian H for Problem (s) is given by
p

H(x,p, I) = -REI + p1f1~T1,X2) 4- p2f~(X~,I)

= (c
3
p2 - RE)I ÷ pifi(T i.X 2) - ~ p2X2. (2 .3 )

-. 
Suppose I i~ optimal, then frc~ the max imum principle

1. t.here exists a nontrivial adjoirit vector p =

which satisfier

L ~~~~~~~~~~~~~~~~~~~~~
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P

* 
~ôH*/ôT. j~h(T~(t);I )/ÔT.)p (t)

~ ( t )  = 
* 

1 
= 

1 

* 
~ 

1

* 
( 2 .4 )

-OH laX
2 -c2

p
1(t) + c4p2(t )

• 
P (t f) J the tangent plane [1 to Xf at X~~(t

f
)~~ ( 2.5)

2. H(x ( t ) , p*( t ) , I*(t)) = max H(x *( t ) , p ( t ) , I) a.e. on [0,tf).
IEf2 (2.6)

Since Xf = j[T.,X2]
T : T

1 
> Tid), (2.5) leads to the condition

p ( t f ) = 0. Finriily performing the maximization in (2.6)  yields (2.1).

Not e that when p (t) ~~3j’2, I*( t )  carl take on any value in ç~

since the Hamiltonian does not depend on I ( t ) . Hence I (t)  can

be chosen so as to make I continuous from the right hand side .

* 3/2
• When p2(t) = RE for sc*ne positive time interval, the ms.x-

imum principle fails to provide any information about I (t)  on that

interval . I*( t )  on such an interval becomes a Thingular” control

and some higher order optimality condition must be employed in order

to specify I*(t) . However, it will be shown in the next lemma that

no singu lar interval exists .

* *Lemma 2.1. p1 is strictly monotone in t and p2 can not be equal

to RE 3I’2 for any positive time duration.

4 _ * *
I ~ 

Proof: First we show that p ~ 0. Suppose p10 = 0, then from

(2 . 2) ,  p~ ( t )  0 on T, and hence p (t) 0 on T. This contra..

*diets the fact that p is nonzero. Now from (1.3) and the defini-

tion of
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rG + B1I;~~;
h/2

/2, for 0 ~ T1 ~ T11 1

~~~~~

.._ (T1~I~) = 1 G + 5B2]H~r~~
’2/2 , for Til T1 < Ti2~~

., ( 2.7)

r + B
3I;

2
ç

]./2
/2 , for T12 

-— T~ J
-3/2 1/2where G = A

3~e 
+ B14, T11 = (B1/(B2I~)) and T~2 =

(B
3
/(B2I~

))~~’2. Obviously ~h(T1
;I~ )/~T1 > G for all T

i 
-
~ 0 ex-

cept at T11 and T.2. Consequently, for T = T (t) such that

ôh(T
~
(t);I

~
)/
~
Ti 

exists a.e. on T, p~(t) is strictly monotone.

Now suppose that p is constant on some interval [t1,t 2) € T,

t1 ~ t~~. Then fran (2 . 1~) ,  p~ (t)  = c14p (t)/c2 
constant since

~~ ( t )  0 on [t 1,t2 1. This contradicts the strict monotonicity of

~;. ‘I

Thus we have established the nonexistence of a singular inter-

val . In the next lemma , we find the maximum number of roots for

p2( t )  = RE 3,’2 .

:1
Lemma 2.2. The equation

p2( t )  RE 3/’2, (2.8)

can have at most two roots on T [o,t1;j. II
.;‘ t  ‘4

Proof: The solutions to (2.2) on [O .t~ ] have the forms

p1( t )  = p10e~~~ J~ 
[~ h(T (s)~~I~ ) /oT1]d sJ

t~ ‘ (2 . ’1)
p2( t )  = S~ 

expjc 4(t - s ) j c2p1(s)ds  P

7 ~ 
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• where p10 
is an unspecified constant . Whe n p10 <. 0 , it follows

fran (2.9) that p1
( t )  aad p2( t)  are both negative for all t € T.

Hence (2.~’) has no solution. Now , assume that p10 > 0. Let

• € (O~t f ) be a stationary point of p2, i .e.,  p2( t )  = 0. Then,

we have fran (2.2) and. Lemna 2.1,

= -c~~~~~ ) + c
~~ 2(

~
’) = -c 2~1(t~E) ‘— 0. (2.10 )

$

This shows that any stationary point ~ is a local maximum point of

Since p2 does not have a corner which can be a local minimum,

* 
can have at most one local maximum. By Lemma 2.1, p2 cannot be

a constant on a posit ive time durat ion . Thus there exists at most

one relative maximum point of p2 in (0 ,t~ ) .  Consequently, there

exists at most two roots for (2.8) on T. ff
Next we consider a special property of the trajectory with

i (t)=i for all t € T .max

Lemma 2.3. Let x( ;I ax) ~ 
[T j ( ; I max) , X2( ’ ;I max)] T be a trajectory

corresponding to the maximum injection 1(t) = ‘max for all t € T.

$ Then Ti( t ; Imax) is the highest attainable ion temperature at any 
- p

time t € (O~tf]. II
~~~~~ H

Proof: Suppose there exists a trajectory ~ = [T~ ,X~~ correspond-
$ 

ing to an injection program ~, such that ~1(t 1) > Tj(t1:Imax
) for

some time t1 € (O .t f ) .  Since ~1( t )  and Tj ( t ;I ax ) are continuous

there exists a time t2, 0 — t2 < t1, such that ~~ (t 2) Tj (t 2;I ax )

S

- 
— —
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and T~ ( t )  
~

- Tj ( t ; Imax) for all t c (t2,t1) .  Then we must have

~ .(t 2) >~~i
(t 2~~max) Now , fran (1.1) ,

- 

~i
(t 2;I ax) = c2(22(t 2) - X2(t 2; I ax~ ~ (2.11)

Also from (i . i)  and (1. 2) ,  for any injection program I ,

X2(t) = $ c
3 

e~~~[-c 2(t - sfll(s)ds.  (2.12)

Fran (2.11) and (2.12) ,

t
- 

~i
(t2;Imax) = c2 52  c

3 
exp [_ c4(t 2 - s)3[T(s) - I ax JdS

~

(2.13)

Here, since I satisfies the constraint 1(t) E 0 = [0 ,1 ]  a.e.

on T , we must have T(s)  - ‘max ~z 0 a.e. on [0 ,t2}. Conse-

quently ~ .( t 2) - T . ( t 2 ;I ax) < 0 .  This is a contradiction .

Now we are ready to present three possible forms for an optimal

heating program .

Theorem 2.2. The opt imal neutral Injection heating program takes on

one of the following three possible forms: - •

I*( t )  = ‘ax on [0 ,t f ], (2.13 )

* 
( ‘max ~ [o,t 1) )

r (t )  = , (2.14)

k 0 on [t 1,t f ]

( 0 on [O ,t0) 
)

I*( t )  
~ ‘max on [t 0, t 32 ) ~ . (2.15)

0 on [t52.t~ 1 I

— - ~~- - - - ‘ ~~~~~~~~~~~~~ - - - - ~~~~-



These programs are illustrated in Figure 6.1.

‘ p

Proof s From Lemmas 2.1 and 2.2, p
2
(t) can only assume one of the

• following three forms :

1. p2( t )  q for all t € T; (2 .16)

2. ( q < p~(t) for [0,t )
-~~~~ 7 si 

~ (2.17 )
p 0 ~— p~(t) ~— q for

3. 
( 
0 < p2(t) q for [o,t0) )

- 

j  
q < p2(t) for (t 0, t 51) ~ ; (2.16)

1. 0 < p2( t )  < q for (t 1~
t
f
] )

where q = BE3/2 and. t~1,
t
52 and t0 are solutions for (2.8) . By

Theorem 2.1, the cases (2) and (3) lead to the injection program (2 .14)

and (2.15) respectively. Case (1) corresponds to I*(t) = 0 for all

t € T , and is not relevant for our problem since Tid > T~ . The

heating program (2.15) corresponds to the special case Tj(tf
;I
max) =

Tid. For this case, by Lemma 2.3, there exists only one trajectory

x( ;Imax
) which satisfies the final condition Ti(tf) >T.d . There-

fore x( :I ) is optimal.

Thus our remaining task is to give a condition for determining

the form of I for each particular case. For this purpose, we look

-. ‘~ in detail at the various trajectories of T1 in the time domain. In

Figure 6.2:

1. The curve C corresponds to the trajectory with
1

i(t) = I for all t - 0. C intersects the line
max 1
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T1 = Tid at time t~,1 and approaches the equilibr ium ion

temperature ~ j (I ax) as t -. 
~~. (The asymptotic stability,

in the first quadrant Q~ of the T1-X2 plane , of an

equilibr ium point 
~

(Imax ) = (
~~i

(Imax)
~~ 2(Imax))  corre-

sponding to 1(t) = ‘max for all t > 0 can be established

by a method whIch will be used in Theorem 3.1 in the next

aection.)

2. The curve C2 correspond s to the injection program (2.114)

for some t 51 > 0. After the neutral injection is cut at

t 1, the value of X2( t )  decays exponentially . Hence

T . ( t )  continues to rise until it reaches a maximum value

at sane time t > T~1, and then decays monotonically.

—
~ 

3. The curve C
3 

corresponds to the special case where the 
—

maximum value T.(t ) is equal to Tid . For this special

case, the injection cut-off time t31 
and the time when

T.(t) reaches T are denoted by t and t
1 id cs em

respectively.

We recognize that t ,t - and t are known once I isci Cs cm max - ‘
*

- 
- 

given. This suggests that we may determine a special form for I ( t)

by comparing t~. with these times. In fact, once t
1
,t and t

or equivalently the curves C1 and C
3 

are computed, a special form

of I for a particular problem can be found by comparing tf to

t and t .ci cm
We conclude this section by summarizing the preceding discussion

in the following theorem .

f~2

±4
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Theorem 2.3 (Algorithm). A special form of I for a given t can
f

be computed with the following procedure .

1. Find t 1,t and t by computing curves C1 and C
3

for a given I
• max

2. Compare tf with t
1 and tem~

3. If t f ~ 
t~ 1~ then conclude that no solution exists.

4. If tf = t cl~ 
then set i (t)  = ‘max for all t € [O ,t f ].

5. If t~1 < t i. � t , then set

* 
Vmax’ 

on [O ,~;) ~
-

- 

- I (t)  = -
~ * 

, (2.19 ) —

* ( 0 , on [t ,tf] J

where t is computed using the condition T1(t~) = Tid . -r

6. Otherwise, set

0 , on [0,tf 
- t em) 

)

I*(t) = ~~~ on [t
f
_t

em~tf
_t

cm+tcs) ~ . (2.20 )

0 Ofl ttf
_t
em+tcs~

tf] I

Proof: When t~~. < t 1, Problem (5) has no solution since Tid can-

not be reached. If t~ = tc1~ 
then there exists only one trajectory

with T~(tf) = Ti~ . and it is realized by 1(t) ‘ax for all t.

Hence 1* takes on the form (a) in Fig . 6.1. When t 1 t f ‘
~

is of the form (b) in Fig . 6.1, and the cut-off time t can be
S

computed fran the condition T 1(t~ ) = Tid. Finally, when tf ~~~ —

I assume s the form (c)  in Fig . 6.1. For this case , the initializa-

tion of the neutral injection is delayed until t = t - t and the

injection is cut at t 5 t0 + t 5 . ii 
0 f em

_ 
-- - - • --- - - 

_—

~~~~

-

~
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1(t )

I
~~ax

0 tf
($)

-

, 

x( t )

I —aax 1

6 
—1

t~j  t f
(b)

z( t)
4

— 
- ~~~~~

L 

to ~$2 t f
(0)

Fij. 6.1. Possible Foras for 1*
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6.3. Feedback Controls and Stability

In this section , we discuss the regulation of the ion temperature

about its desired value . ~1e consider two different forms of feedback

control. In both cases the ion temperature Ti is measured and fed

back to control the neutral injection current I. The effect of the

time delay in a feedback control on the stability of the total system

is then discussed.

First, we consider the simplest on-off feedback control such that

either the maximum injection or no injection is supplied depending on

whether the ion temperature is less than or greater than the desired

value T. ,id

( Snax ’ T~ (t)  < T jd~~
1(t) = I(T.(t)) = 7 . (3 .1)

0 , T~(t) > T id J
The behavior of the complete feedback control system in the first

quadrant of the T~ - X
2 plane is shown in Figure 6.3, where

the curves and

: X 2 = [h( T . ;I ) - c1J/c2, ~
- (3.2)

r2 : X2 = c
3
1(T .)/ c4,

are the zero-rate curves for T. and X2 respectively. SInce 12

is discontinuou s , and 12 may not intersect and the equilibrium

point (e .p.) may not exist . In fact , when T id is less than the

equilibrium ion temperature corresponding to 1(t) = ‘max as Is the

case ehown in Fig . 6.3, the curves and 12 do not intersect .

I - 

8E
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CHAPI’ER VII
3

CONC lUSIONS AND SU~GESTI0NS FOR ~1JRTHE R RESEA RC H

7.1 Multiple Stage Optimal Control Problems

Three classes of multiple stage opt imal control problems moti-

vated by the prob lems of minimum in~*~t energy heating of toroidal

plasma by mean s of neutral injection were studied. The derived results

were utilized in analyzing plasma heating problems .

First , a two-stage opt imal control pr oblem havin g an integral cost

functional with an integrarid which as sumed different forms before and

after an unspecified switching time was examined. The existence of

an optimal control pair (control, switching time) for a general class

of problems was established using properties of aug~nented attainable

s~ ’s. A necessary condition was derived via the methods of calculus

of variations . A more general necessary condition in the form of a

maximum principle was obtained by deccinposing the two-stage opt imal 
- I

control problem into two standard problems. In both cases an optimal

switching time was characterized by the requirement that the Hamilton-

ians corresponding to the first and second stages are equal at the time

of switching. A sufficient condition for the nonexistence of an opt-

imal intermediate switching was derived for a linear regulator problem

with a two-stage quadratic cost.

Secondly , a generalized multi-stage opt imal control problem was

considered, for which the inte gra nd of the cost funct ional was allowe d

to change its form frcin one to another among N given form s at any

instant for any number of times. This problem was reduced to a

914
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AP~~NDD( A

STANDARD EXISTENCJ~ THEOR~24

Consider the following optimal control problem:

Problem. Given a system x = f (x ,u ,t), a control t ime interval

terminal conditions x(t0) € and x( t~ ) € X~ where

X0 and Xf are nonempty closed sets in Th~~, and a control con-

stra int set c~(t) € ]E’~, t €  (t0,t~.]. fin d an admissib le control

which minimizes the cost functional

t f 
- 

-
-

J(u) r 
$ 

L(x(t),u(t),t)d.t, (A.l)
to

i.e., J(u~) -. J(u) for any admissible control u. (A control u

is said to be admissible if (1) u(t) € ~ ( t)  a.e. on [t
0,
t
f

}, and

(2) the corresponding trajectory q satisfies ~(t0) 
€ X0 and

~.(tf
) € X

f
.) ~

We state the following Lemma without proof. (For a proof,

refer to 3] .)

Lemma A.l. Assume that the following hypotheses are satisfied.

1. The set of admissible controls A is nonempty ;

2. There exists a ccinpact set ~~n.4-l 
such that for all

admissible trajectories ‘
~~, (t ,p ( t ) )  

~ ~~~
, for all

t ~ [t
0~
t~ };

~~~. at any ‘r € [t0,t~ ) , for every c 0. there exists a

‘~ 0 such that for t t

100



It-ri e(c) implies CXt) is contained in a closed

c-neighborhood of 0(i);

ii . the set 0(t) is c~npact for all t € (t0,tf];

5. for each (t,x) £ R, the set v~(t,x) is convex, where

v~(t,x) = (
~ (y0,y) € i~~~~:y > L(x ,u,t),

y f(x,u,t), u € 0(t)j, (A.1)

and ~ c ~ is an open set such that c R;

6. L is lower semi-continuous and f is continuous in ~ x U,

where U c ]Em is an open set such that L~ rt t 10(t) CU.$ — € L O ~~~f 
—

*

Then there exists an optimal control. u such that

J(u *) < 3(u)
•

for all admissible u.

$ 

H

p

p

S 101 -
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APPENDIX B

C(14}UTATION OF FIRST-ORDER VARIATI0~~

* * *Let (U ,t1) and x be an opt imal control pair and a corre-

spending optimal trajectory. Let (u ,€1) and ~ be a perturbed

control pair and a corresponding trajectory such that,

= + 

:v~

t + cr) , (B.l)

x = x  +~ y, (B.2)

where c -• 0 and (v ,’r) and y are respectively a perturbation

pair and their corresponding trajectory variations. It is known

that y obyes the variational equation

= (~f*/~x)y + (~f *I~u) ( 1 3 . 3)

Assume initially that t~ € (t0~t~). The other cases will be treated

later. Here we use the supersclipt “*“ to denote optimality and

II  A” to denote a perturbed quantity.

First we introduce two functions. Let p be a differentiable
p

ad.joint vector which satisfies

= (~ L~/~x)~ - (~ f/~x)
T
p, (D.li~)

4 where i = 1 on [t0,t1) and i = 2 on (t1,tf]. Let the

Hwniltonian H~(x ,~ .u,t) be defined by

Hi(x ,p,u,t) = -L1(x ,u,t) pTf(x u t) I = 1,2. (13 .5)

102
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Using (B.5), (B.li) can be simplified to
$

= _ (~H1/~x)
T. (B.6)

Now the cost corresponding to a perturbed control pair (u ,C1)
C

is given by

t
f

J(u,t1) = J L1
(x,u,t)dt + J’

~ 
L2(z,u,t)dt. (B.7)

C 
to ti 

S 

-

By adding terms which are identically zero, we get

J(~~,€ ) = 
j 

(L1 + P
T(x...f))dt + J [L + pT(x_ ~)]dt

o 1
‘C t

x-111)dt + J [p x-1~2]dt. (B.8)

At each instant of time, can be expanded as

H1 = + c(ôH /~x)y + ~(~ H / ~u)v + o(c). (B.9)

Substituting (B.3) and (B.9) Into (13.8) yields

t
~~l T * * * *= ~~ + c(p ~ - (aR1/~x)y - (~ H1/~u)vJJdt

O

+ F
tf [ T.* H* E

T 
- (~H /ôx)y - (~ H ./~u)v))it + o (e )  - :‘ ~

* 
l,- f 

~~~~~~~ *x - H
1
]dt + [p * - H2]dt

0 1
C 

- + (~H~/~x)T]Ty - (~H/~u)v]dt

$ 
- ~~ 

[ [
~ + (~H/~x)T)Ty - (~H /~u)v]dt

• 
103

S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



___ - 
.~~

-._, ,

I

T * * T *  *
+ c[(p k. - }~~_) - (P ~~÷ -

4- € [(p  - P~YO
) + (p~y’~ - + o (€ ) ,  (B.10 )

where the subscripts “ -“
, 

“ +“
, “0” and “f” denote the left and

right limit at t1 and evaluation at t0 and t~. respectively.

Since y0 = 0 (x0 = x(t0) is fixed) and p satisfies (m.6),

equation (B.lO) can be simplified by cxibining the first two inte-

grals to give J(u*,t~).

* *  * rtf ~J(u,t1) = J(u ,t1) - € [ 
~ 

(ôH1/~u)vdt + (~ H2/ôu)vdt ]
to t i

+ c[p;’~ - - +

+ E[P~Yf 
+ pTy - pTy j  + 0 ( c ) . (13.11)

Here the perturbations y , y
÷ 

and i satisfy the following rela-

tion (see Fig. A.l):

= 
~~~_ 

+ - ~~)‘r . (13.12)

Using this In (13.11), we get

= J(u*,t) - c[ J’ (~H /~u)vdt + S (~4/~
u)vdt]

+ c[(p - ~+) ~ + (_H
~ +

+ - ~~ )T~ + €P~Yf + o(c) .  ( 13.13)

Hence the first variation M

J ( t ~,t ) - J ( u *,t~ )
= urn 1 

~P~.lI~)

~-.0 E

1oI~
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is given by
p t t

- - ( a4ku)vdt + (p -

+ ( ( r  - ~~)
T.* 

+ (-R~~ + 
4+

)~~~~ 
+ ~~~~ (B. 15)

For optimality of (u*,4), M must be zero for any perturbations

v, y ,  ‘r and y~~. Hence we finally arrive at the following set of

conditionS.

a f f /~u ( t)  0, 1 1,2, (B.16)

P(tf) = 0, (8.17)

p(t ) = p(t~~) , (13.18)

• IllIt* = R2l.,1~* . (8.19)
1- 1+

When t is at one of the end point s, the perturbation at t

cannot be arbitrary . For example , suppose t1 to then ‘r must

be nonnegative so that t1 = t0 + c~r € [t 0~t f 1 For this case , the

first order opt imality condition is given by

• ~~~~~~~ (B.20 )

After eliminating the terms connected with the variations in u and

x (we note that the conditions (B.lb) and (B.17 ) remain satisfied
p

• since y~ and v are arbitrary), we have

T *  * T *
e~J ( r )  CL1 - ~~~ - L2~ + p~f~)i. (8.21)

p

Hence we must have

105
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H1(x0,p(t0),~~~,t0) ~~H2(X0,p(t 0) ,~~~,t0) .  (B.22 )

The other case where t1 = t~. can be treated similarly. In fact ,

j e’J(r) = (4 - pT~* 
- L;~ + (B .23 )

with T —. 0 for this case. This and (8.20 ) give

H1(X (t f ) ,P (t f ) ,u ,t )  > n 2(x*(t f ) ,p(t f ) ,u ,t ) .  
~J (B .21~)

Notes:

(N. 1) U and u at t t and t are solutions of

and 

u/ t ) ,
~~

t) , , tfl~~t0 OD t 0~ (13 25 )

(aH 2/~
u ) ( x ( t ) ,p ( t ) , u ,t fl t t  or tf ~~ (B .26 )

(N.2 ) It’ we consider J*(t1) ~ J(u~~,t1) to be a function of
as we have done In Section 2.2, then the first order var-

*iation of J with respect to t1 is actually given by

= 

~~t1
_ + H 1 t )T. (B .~~~)

I:~ fnct we have

*( ) /  = - H 1 t + H 1 t + . (B.28)

1.06
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APPENDDC C

MAXfl4UM PRINCIPI~

Recall the optimal control problem considered in Appendix A.

Assume that f and L are continuously differentiable in

x Th . Let the Hamiltonian be given by

H(x ,p,u ,t) = -L(x ,u ,t) + pTf(x ,u ,t ) .  (c.i)

*Suppose u is optimal, then it is necessary that
*

1. there exists a nonvanishing ad.joint vector p which

satisfies

* m * * *j i ( t)  = -(Mi/~x)~ (x (t),p (t),u (t),t)

* * ~
- 

-

p (t
0
) j the tangent plane i~ to at x (t0), (C.2)

p
*
(t) 

~ 
the tangent plane [I

~ 
to X~ at x*(t 1),

2. max H(x*(t),p*(t),u,t) = H(x*(t),p*(t),u (t),t)
u€ Q

a.e. on (t0,t~]. (C.3)

Remarks

(R . l )  When the final time is free , then at an optimal final time

t we have

H(x*(t;),p
*(t;) ,u (t;) , t;) = ~. (c.~ )

(R.2) When X
0 

and/or Xf is reduce~~to a point , p*(t 0) and/or

p*(t) can take on any value. When X
f = Th° (correspond-

ing to free end point), p*(tf) = 0.
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p

(R.3) When the cost functional. includes a terminal cost, i.e.,

f
, r (u )  = $ L ( x ( t ) , u ( t) , t)dt + K(x(t f )~ tf )~ (c. 5)

t0
n

and X 4. = , we have
p 

J.

p~
’(t) = (~ K/~x ) (x *(t f) , t;),

= ~(~ K/~t t’
) ( X *(t f ) , t;) ,

where K is assumed to be continuauslY differentiable in

IE5 x IE . II
The maximum principle was originally proved by Pontryagin et 

a]..

P. 
[ 371.

r

p
.

p

~L A  _
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API~ NDIX D

K1JHN-~JCKER COND ITIONS

A statement and discussion of the Kuhn-Tucker conditions can be

found in any standard text on methematical prograzrmiing. (For example,

Chapter 3 of Canon, Callum and Polak LI ~
- 1) . We present the following

Lemm a without proof .

Lemmna D l .  Consider the following nonlinear progranining problem on

minimize J (u ) ,

subject to g
1(u) 

<0, i = 1,2,. ..,k, (D l)

rj (u) = 0, j  = 1,2,... ,L.

Let u~ solve this problem. Assume that J, g1 and r~ are

differentiable at u~ . Then there exist a set of nonpositive multi-

pliers X0,X1,...,)~ and a set of.multipliers 
~~~~~~~~~~~~ 

such

that

1. \4g.(u ) = 0, i 1,2,. ..,k~ (D.2)

k 
* 

L 
*2. V f ( u )  + 

~~ 
V g1(u ) + 

~~~~ 
V r~(u ) = 0. (D.3)

1=1 j=1 ~

1-
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AP~~NDD( E

CG(RJTAT ION OF GRADIENT V~
M (u)

Recall that V M(u) has three terms

V M  = X0V J (u) + 
~
V h ( xk (u) ) + E X

1Vg.(u). (E.l)

We will calculate each term separately . First consider V g 1(u) .

Fr~~ (IV .2.3) ,  we get

1 , i~~~ j 1

P 

(~~) 

j2
[u
i
-(v

i
+w
i)/2J~ ~ 

. (E.2)

Hence

2X1(u 1 -

p 
k 

—
Z~X1V g ~ (u) = 2X2(u

2 
- u2) , (E.3)

—

2X
~

(u
k~~~

ii
~
)

where = (v . + w1)/2 , I = 1,2,...,k.

Next c~ npute V
~
h(x

~
( u) ) .  Let x~ ~ 

x(t1), i = 1,2,...,k , then

p 
(~h(z~(u))/~u1) ~~~~~~~~~~~~~~~~~~~ 

p

= (~
h(x

~ )/~
xk) (

~
xk/~

x.~~1) .. . ~~~~~~~~~ (~ x~/~u .)

(E. 1~)

Let x ( t ; t11
,x11,u1) be the solution trajectory of the system

equation ( l v i i )  on a subinterval [t 11,t1) such that

p
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= f( x ( t ; t j l~
xi l,ui) , uj),l 

(B .5 )
~ x(t

11
;t 1 1 , x11, u )  x

11. J
Then x (t;t11,x11,u1) on [t11,t1

] can be written as

t
x(t;t.1~x11,u~) = x11 + j f(x(T;tIl,xjl,u1),uI)dT.t

- (E .6)

By differentiating both sides by U1, we get

~x ’ t ;t11,x11, u1)/~u1
t

=

+ (~ f/~u .) ( x ( ~r ;t . 1 ,x11, u .) , u1fldT . (E.7)

This show s that 
~
x (t ) / ou i on [t

11,
t.) satisfies the initial

valu e problem

t d -’àx/~~1)/d t} ( t)  = f
~
(x(t),u1

) [ (
~~!~~i

)(t)J +

= 0, J (E.~E)

where the subscripts x and u denote partial differentiation with

respect to x and u respectively. Hence on [t
1~~,

t.)

= ~(t ,T)f (x(T),u.)dT, (E.9)

where “(t,-r) is the state transition matrix of the system (E.8),

i.e.,

dc (t,T)!dt =
r (E.10)

= i.
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a

P Therefore ~z1/~u 1 is given by

t i
àx 1/àu~ - J~_ 1 ~(t 1~1)f (x ( T ) ,u~ )dT . (E.11)

Now-, by differentiating (E.6) with respect to x11 and. replacing I

with j ,  we have for t c [t~~1
.t~)

• 
(~~x/~ x . 1) ( t )  - = J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(E.l2)

Again this shows that (~x/~x~~1)( t )  is a solution of

• (d(ax/ ~x . 1) / d tj ( t )  = f ( x ( t ) ,u )-[ (ax/~x 1)( t ) J,
3-  X >. (E . l3)

J
By canparing (E.13) with (E.i0) we immediately have

= (ax/ax . 1) (t ~ ) = ~(t~~~t . 1) .  (s.i’~)

Using ( E . 9) and (E .i ’~.) ,  (E.14) can be written as

( ah/~~ I) ( x k (u) ) =

= (ah / )
~~(tk ,tk l ) .  ..~~(t 11,t1) f~ •(t )f (x( ) )d p 

-
t j 1

t i
= (

~
h/
~
x
k) f~ . ~(t k ,T) f U ( x ( w ) , u

~
)dT . (B.15)

This gives

p

5 

- 
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t

~
L(
~
h(X

k
)/

~
X
k
) st~ ~

(tk ,T)f (x(i) ,u1)dr

h(x
k
)fôx

k)St
2 

~
(tk ,w)f u (x (T ) ,u2)dT (E.16 )

L ~~~~ ic~St~ 1 ~
(tk,.r) fU (x( T) ,u

~
)d1

Now we proceed to the final term V~J(~) . Since x(t), t < t~

does not depend on u~ , we have

k t j
(~~J/~u )(u) = ~ I L (x(1),u )di)/~uI j  j  I

~ 
j -l

= 

~ 
j ~ [L 

~
(x( T) ,u4 ){(

~~
/
~~i

)(1)3
j =i ~~~~1 

I)

+ L~~(x(T)~u~) ~~~~~~~~~~~~ 
]dt

t i
= L

1~
(x(-r),uj)dT

t i_I.

k
+ 

~~ J L (x( -r ) ,u ) ((~ x/~u )( -r ) Jd’r (E.17 ) —

- i-i 4•

Again by (E .9 )  and (E.lli.) , for -r -
~ 
t~

ti
(~x/~u1)(-r) = J I (T , s)f ~(x( s) ,uj )ds . (E.18)

ti_l 
p

Substituting (E .9) and ( E .18) into (i~ .17), we get
ti

(~ J/~u 1)(u)  = $ [L1~
(x(’r), u1)

p 

ti_ i

+ Lj~
(x(1),uj)

+ 
_

~~~+~~ 
S~ 

L~~ ( x (r ) , u~ )$ ~~
r ,s)f ~ (x( s), u j ) d s dr .

j—l i-i
(E.19)

H 
11)4
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a

• 
By interchai~~I~~ the order of integration azil rearrar~ Ir~g terms,

(E.19) can be expressed as

k
= $ [ E $ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p 
t1_1J=i÷I. t~_1

ti ti
+ $ [L~~(x(s),u1)+$ L

1~
(x(-r),ui)~

(-r ,s)di f
~
(x(s),uj)Jds.

i—i (E.2o)
•

For notatic~~.]. simplicity , let

L(x ,u ,t) ~ L1(x ,u1) on ft 1_1,t1) ,  i = l,2,...,k , (~~.21)

• then
t
i

= S fL~(x(t ) , u,t) ÷ J .~ 
L
~
(x(T),u ,’r)I(T,t)dtf

~(x(t),u±)Jdt
.

(E.22) 
5

-

Combini r~ (EJ.5) and (E.22) leads to

= ?~0(~ J(~)~~ u1) + k ”~~i~ 
: 

- -

* tj
= 
$
t
~~~~~~

T
(t
k
,t
~~~~~~~~k),~~~k)

T

+ 

~~ $ ~
T(T,t)LT(x(-r) u ,-r)d-rj

Tf (x(t)u )dt

• ti

t

+ 5 ?oLu (x(t),u ,t)dt . (E.23)
i—i

Now let p be an ad joint vector satiafyir€
5 

‘
5’ -

‘j ~ (t) = =f T(x(t),u( t ) )p( t )
C.,~ X I (E.2l~)

~
p(tk ) = J.(~h(xk )/~xk )T . j

p

~~uatIon (L2 11) can be solved to yield
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tk
p(t) = *(t,t,~)p(tk) + St 

t,-r~~0
L~(x(’r),u,T)dT, (E.25)

where ~,(t ,r) is the state transition matrix for the adjo irxt system

(E.2 14), i.e.

~fr ~,(t ,i) = X 
( (E .26 )

4r( r , r) = I. J
It is well-known that

4r(t ,1) = (*
_l
(t ,T))

T 
= ~

T(5r ,t ) .  (E.27 )

Now , combining (E.23), (E.2~.), (E.25) and (E.27),

t i
= St P\0L

~
(x (t) ,u ,t) + pT(t)f ~(x( t ) , uj  ldt . (E.28 )

i—i I t

We can fu rther simplify (E.28 ) by Introducing the Hamiltonian

H(x ,p, u ,?\0 ,t) = 7’~0L(x ,u ,t) + pTf(x ,u) .  (E.~~ )

Then

= j (~H/~u)(x(t),p(t),u(t),?~0,t)dt. (E .30)
ti-i

Note that since L(x ,u ,t) = L1(x ,u1) on [t 1~1,t 1) ,  we also can P

write
ti

~~(~~ /~u1 = S ~~~~~~~~~~~~~~~~~~~~~~~~~~ (E.~l)
ti_IS •

• by defining

— 
H1(x,p ,u11~ 0) = ~0L1(x ,u 1) t ~~~~~~~~~ (E . -

~2)
p

Thus , we have

lit -
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1

[ 

j~
v~~

(uJ 
~~~~~~ 
( 2/~ 2)(x(t),p(t),~2,~0)dt . (E.33)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Finally, combining (E.33) and (E.3), we have the desired gradient

p *- 

. 
v~M(~i ) .

r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t
o

V M(u*) = S.~ 
H2/ 2Xt~~t + 2

~~2 2 ~~~ 2) 
, (E.311.)

- 

- tk 
~~~~~~~~~~~~~~~~~~~tk_l

where

• * * * * *(~H1/~
u
1)(t) 

= (
~
H
~/~

u
~

)(x (t),p ( t) ,u1,A0).  (E.35)

t

p

p
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APPEM)~~~ F

COEFFICIE N~S OF THE TW0-TE~lPERATURE MODEL

The coetficierits ~~ B~ and C L of the two-temperature model

(v.1 .2a) - (V.1 .2d ) are positive constants given by 
I 

-

= 3.7 X lO2~jZ~
ff (a~N~~)

_1
, A2 A2(Ne~

)
~
’;

A
3 

= O .l11.8Z~~~(AZ~~) 
~~ A~ 0 .ll6N

1
( N~~) ~~~~~~

A 5 = l .86C1(N ~~) ’, B1 6.05xlO
_
~ (a/R) 2Ai/2Zeff (Zn~)

_
~

B2 = l •llA1’2(NeZn~BR2)
_1

~ B3 5.2XlO _3(a/R)h/2Ah/2Z5ff (Z
fl~~ 1~

= O .l86N (N Z Z)~~ , B
5 

l .86C2(N~~)~
1,

C1 = O.56Z~~A~~)~~, C2

(F.1)

with

Ne
Zeff = E ~~~~~ Ne~ 

= E N
J
A ’Z~~ Ne = Z~ N1~ N

1 
= ~~~

(F.2)

where A and Z1 (reap. AN ~~ ZN) are the mass number and ionic

charge number of the ions (resp . injected neutral particles) respect- t 
-

ively; A~ and Z3 
are the mass and the Ionic charge numbers of the

j-th species in the plasma or the impurities; ~~~~~~~ and N~ are

respectively the number densities of the electrons , ions , neutrals

and the Ions of the j -th species In the impurities; Zeff and ~~ are

respectively the effective and the modified effective charge numbers;

B is the toroida.]. magnetic field; a and R are the minor and major

radii of the plasma torus respectively, and is the correction

11~
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5,

~ 
factor for the Joule heating term (Includix~ trapped-particle effects

- 
. and Z-correction) . The coefficient A,, depends on the regime of

electron diffusion. In the collisiona.l regime (T TC ) ,  a =

= 0 and A,, = YeZeff Ne/(~~ )’~ where “
~‘e is an anomaly factor , and

TC Is the transition temperature for thi s regime . In the regime

(T > T )  where the electron-loss is d omi nated by trapped-electron

i nstability , we have cx = i~~/’. ~ = ~4 and I~~= ’Y N / ( B Z ff C~ ~;e ’
where = a/H and 

~pe 0 .~~ is the “poloida.l beta ” associated with

the electrons .

For the T.F’.H. experiments, the specific values for various para-

meters are : ‘ \ = ~~ ‘ , A = l .  Z1= l , a = :~. R = 1 .  Z = 2 ,  B= 4 , Z N = l .  A N = l .

- 
~~. Z ff = 4 ) ~ = i/2, N1 = : ? , N1= and N = 5, where the units  are as

follows: T .T
1 (Ke

y), E(lO Key), I (10 amperes), I~, (10
6 
amperes).

Ne~
Ni (l0

13
/cm~), N0 (1O

8
/cm~), N1 (1O~~~

cm~), a (10 cm), H (100 cm).

and B (lou 
gauss).

The two-temperature model is formulated on the normali zed time

scale t wh ich is related to the real time scale t(m sec) by

dT = (28Aw ;1z; )dt .

The constant H in the cost functional (v.1.~ ) is give n by

H = 1.86A/(Z 2N1).  (
~‘ .~

) - -
-

i p
• 1
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APPENDD~ G

HA II~TONIA~~ A~~) ADJOINF E~UATIO~~ FtR PLA~ 4A HEATIN) PROBL~ 4

The Hamiltonians (v.3.1) and (V.3 .2) in Charter V are given in

explicit form as follows :

= (~~3
T;3/2 + ~~~~~ - RE)I - A1~~~T_3/2

+ p1 
;3/2 _ A

2c
_ A

3
(Te

..T
I )T~

3/2 _ A ~ + A
5
X1)

+ p2(A 3
(T - T1)T;3/2 

- S~~ (T1;I~ ) - B~T1 + B
5
X2)

+ P3
((C1T

;3/2 
+ c2E

_3/2)x.~

+ P41(C1T
;3/2 

+ c2E
_3/2)x2), (G.1)

S I
H1(x ,p,I,t) = H2(x ,p,I,t)  + REX . (G.2)

The adjoint equations (V.3.10) are written explicitly below in

equation (G.3) . Note that since the Jacobians (oH
1

f a x)  and (âH2,/~x) are

identical, the adjoint vector p(t) satisfies the same differential.

equation (G.3) on two stages .

+ p1~~ &1i~r
;5/2 +aA 2I~~1’ - 

~~~ 
A
3
(T~ - 3T1)T 5/2

)

+ p~~~(~~~ 
A
3
(Te

_ 3T1)T
5/’2)+P31~ T 5,/2EI_ ~~ c1T;5/2x~)

P2 
= } + p2fA~T

3~
’2+ asDj Ti;IP

/
~
Ti +

P
3 

p1(-A 53 
+ P

3
cc1

T;3/2 + c2E
_3/2),

= p
2(-B~ ) 

+ p~ fC1T5 ’3h/’2 
+ C

2
E 3/2

). (G.3)

H
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